YG-1 / 22 RUS

РЕЖУЩИЙ ИНСТРУМЕНТ

СМЕННЫЕ ПЛАСТИНЫ

76 YG-1 CO., LTD.

СОДЕРЖАНИЕ

		Разделы	Ст			
	Система обозначени	я державок для наружного точения	3			
	Система обозначения державок для внутреннего точения					
	Система обозначения сменных пластин (ISO)					
	Система обозначени	я сплавов	9			
	Диаграммы токарны	х сплавов	10			
	Токарные сплавы					
	Токарные стружколомы					
	Руководство по прим		1:			
	Шероховатость пове		2			
Токарная	Выявление и устранение неполадок					
обработка	Обзор пластин для токарной обработки					
	Инструмент Негативные сменные пластины					
	5.000 P7.0000	Позитивные сменные пластины	5			
	Обзор державок для		6:			
		в внутреннего точения	6			
	Инструмент	Державки для наружного точения	6			
	Micipyment	Державки для внутреннего точения	8			
	Authorise					
NEW	Антивибрационные Инструмент	оправки Картриджи для антивибрационных оправок	9			
	инструмент		10			
NanoCut	Токарные резцы	Резцы	10			
*********	- CANADA CONTRACTOR	Оправки	10			
Отрезка и обработка		Державки для отрезки и обработки канавок	11			
канавок	Инструмент	Пластины для отрезки и обработки канавок	11			
	Расшифровка кодир	овки корпуса	11			
		я сменных пластин (ISO)	11			
	Сплавы и стружколомы для фрезерной обработки					
	Обзор корпусов					
	Обзор пластин для ф	резерования	12 12			
	Инструмент	Торцевое фрезерование - Корпуса	12			
Орезерная	a Maria La maria	Торцевое фрезерование - Пластины	13			
обработка		Фрезерование уступов - Корпуса	14			
of an alon		Фрезерование уступов - Пластины	15			
		Копировальное фрезерование - Корпуса	15			
		Копировальное фрезерование - Пластины	15			
		Фрезерование с высокими подачами - Корпуса	16			
		Фрезерование с высокими подачами - Пластины	16			
		Модульный хвостовик	17			
		Сплавы и стружколомы	17			
Сверление	Инструмент	Сверла для сменных пластин	17			
сверисние	rincipymeni	Сменные пластины для сверления	19			
	ISO 13399	систике томестики для сосрясти	19			
Гехническая	Переводная таблица	шкал тверлости	19			
информация	Формулы		19			
	Группа материалов		19			
	группа материалов		21			

ТОКАРНАЯ ОБРАБОТКА

Обзор инструмента
Руководство по применению
Токарные державки
Сменные пластины для токарной обработки

Токарные державки - система кодирования

Система обозначения державок для наружного точения

*Метрическая	1								
1	2	3	4	5	6	7	8	9	10
P	C	L	N	R	25	25	M	12	(C)
Тип крепления	Форма пластины	Угол в плане	Задний угол пластины	Правая/ Левая	Высота державки (H)	Ширина державки (В)	Длина (LF)	Размер пластины	(Доп. прижим)

1 - Тип крепления

M

Система C Прижим сверху (пластины без отверстия)

2,4-	- Con	мест	имос	сть п	ласт	ин и д	ержа	вок*
		I			V	1		
T	L	N	R		C	N	M	G

Прижим сверху (пластина с прямым зажимным отверстием)

державка * Относится к обозначению пластины для проверки совместимости

3 - Угол в плане

Угол в пламе	Бакурае	направление	Промоенепреспекие
(KAPR)	Towns	Chieu	(CHINGS)
45°	D &	S &	
60°		T	
63°	N REST		
72.5°	V		
75°	B		K
90°	A de la	G	F
93°		J	U
95°		L (Оба направления)	8.
107.5°		H	

7/GTURN

Токарные державки - система кодирования

Система обозначения державок для наружного точения

						A STATE OF THE STA		
*Метрическая								
1	2	3	4	5	6	7	8	9
S	D	J	C	R	20	20	K	11
Тип крепления	Форма пластины	Угол в плане	Задний угол пластины	Правая/ Левая	Высота державки (H)	Ширина державки (B)	Длина (LF)	Размер пластины

5 - Исполнение

Обозначение	Исполнение	
R	Правая	
L	Левая	
N	Нейтральная	B

8 - Длина (LF)

Обозначение	Длина (мм)	Обозначение	Длина (мм)
E	70	Q	180
F	80	R	200
Н	100	S	250
K	125	T	300
M	150	U	350
P	170	V	400

6, 7 - Высота державки (H) Ширина державки (B)

9 - Размер пластины *

Пример	Совместнию с
PCLNR 2525M 12	CNMG 120408
SCLCR 2020K 09	CCMT 09T308
TWLNR 2525M 08	WNMG 080408

^{*} Относится к обозначению пластины для проверки совместимости

(10 - Доп. прижим)

Обозначение	Доп, прижим
c	Присутствует

Токарные державки - система кодирования

Система обозначения державок для внутреннего точения

1	2	3
Δ	32	S

сож и Материал

Диам. хвостов.

Длина (LF)

Тип крепления

пластины

Угол в плане

Задний угол

Правая/ Левая

(Доп. прижим)

10

1 - СОЖ и Материал

Материал	COM	Обозначение
Colori	0	A
Сталь	x	S
Твердый сплав	0	E

4 - Тип крепления

Обозначение	Система
c	Прижим сверху (пластины без отверстия)

2 - Диаметр хвостовика (DCON)

Штифт и Прижим сверху (пластина с прямым зажимным отверстием)

Прижим рычагом (пластина с прямым зажимным отверстием)

3 - Длина (LF) Обозначение Обозначение E Q 70 180 R 80 200 S H 100 250 K T 125 300 U M 150 350 P V 170 400

s	
	Винт (пластина с отверстием для винта)
T (D, A)	Прижим сверху (пластина с прямым зажимным отверстием)

7/GTURN

Токарные державки - система кодирования

Система обозначения державок для внутреннего точения

6 - Угол в плане

Угол в плане:	Боходое направление	Применециятеле
(KAPR)	Cure	ценные
75°		K
90°		F
93°	J	U
95°	С (Оба направления)	
107.5°		Q

8 - Исполнение

Обозначение	Исполнен	M2
R	Правая	
L	Левая	7
N	Нейтральная	

9 - Размер пластины *

Пример	Совместнико с
PCLNR 2525M 12	CNMG 120408
SCLCR 2020K 09	CCMT 09T308
TWLNR 2525M 08	WNMG 080408

^{*}Относится к обозначению пластины для проверки совместимости

5, 7 - Совместимость пластин и

* Относится к обозначению пластины для проверки совместимости

(10 - Доп. прижим)

Обозначение	Доп, прижим
c	Присутствует

7/GTURN

Система обозначения сменных пластин (ISO)

*Метрическ	кая : ISO 1832						стр. 14	стр. 12
1	2	3	4	5	6	7	8	9
C	N	M	G	12	04	08	-UG	YG3020
Форма	Задний угол	Допуск	Крепление и стружколом	Размер пластины	Толщина пластины	Радиус при вершине	Геометрия стружколома	Сплав

Форма

Обозначение	Оорма	
н	Шестигранная	
0	Восьмигранная	
P	Пятиугольная	
S	Квадратная	
T	Треугольная	
c	Ромбовидная 80"	
D	Ромбовидная 55°	
V	Ромбовидная 35"	
w	Трехгранная	
L	Прямоугольная	
K	Параллелограммная 55°	
R	Круглая	

2 - Задний угол (AN)

Обозначение	Задинії угол (Л	0)
N	Без заднего угла	
В	Задний угол 5°	
C	Задний угол 7°	
P	Задний угол 11°	
D	Задний угол 15°	1-
E	Задний угол 20°	AN
F	Задний угол 25°	
0	Специальный	

3 - Класс допуска

Оболначения	Диам.впис. окружи. IC (мм)	Высота реж. промяж М (мм)	Толицина 5 (мм)	
C	± 0.025	± 0.013	± 0.025	
E	± 0.025	± 0.025	± 0.025	
G	± 0.025	± 0.025	± 0.13	
H	± 0.013	± 0.013	± 0.025	
K* =	± 0.05~0.15*	± 0.013	± 0.025	
M*	± 0.05~0.15*	± 0.08~0.2*	± 0.13	
U*	± 0.08~0.25*	± 0.13~0.38*	± 0.13	

^{*} Класс допуска отличается для пластин размера IC. См. ISO 1832

4 - Крепление и стружколом

Обозначение	Крепление	Струмнылом	Изображение
N	Без крепежного	x	
R	отверстия	Односторонний	
A	Без крепежного	x	П
M		Односторонний	
G		Двусторонний	
w		x	
T	Без крепежного отверстия Цилиндрич. крепежное отверстие Винтовое крепежное	Односторонний	
U		Двусторонний	
x		Специальный	

YGTURN

Система обозначения

*Дюйм							стр. 14	стр. 12
1	2	3	4	5	6	7	8	9
C	N	M	G	4	3	2	-UG	YG3020
Форма	Задний угол	Допуск	Крепление и стружколом	Размер пластины	Толщина пластины	Радиус при вершине	Геометрия стружколома	Сплав

5 - Размер пластины

			Метрическая					
S	\triangle	C →	D		W	R	Диам.впис. окружи. IC(мм)	Дюйм
06	11	06	07	11			6.35	2
07							7.94	2.5
09	16	09	11	16	06	09 (00)	9.525	3
12	22	12	15	22	08	12 (00)	12.7	4
15		16					15.875	5
19		19					19.05	6
25		25		RIT	SH!		25.4	8
						06 (M0)	6	
						08 (M0)	8	
						10 (M0)	10	
						12 (M0)	12	
						16 (M0)	16	

6 - Пластина Толщина (S)

Метрическая	Толщина - 5 (мм)	Дюйн
T1	1.98	1.2
02	2.38	1.5
03	3.18	2
T3	3.97	2.5
04	4.76	3
05	5.56	3.5
06	6.35	4
07	7.94	5
09	9,525	6

7 - Радиус при вершине (RE)

Метрическая	Радиус при вершине - RE (мм)	Дюйм
01	0.1	0
02	0.2	0.5
04	0.4	1
08	0.8	2
12	1.2	3
16	1.6	4
20	2.0	5
24	2.4	6

Система обозначения сплавов

1	2	3	4	5	(6)
YG	3	0	2	0	(G)
YG Бренд	Обрабатываемый материал	Версия сплава	Применяемость (1-я цифра)	Применяемость (2-я цифра)	Вариации
CVD покрытие (4 Цифры)	•	•	•	•	YG3020
PVD покрытие (3 Цифры)	•	•	•		YG211
Без покрытия (2 Цифры)	•	•			YG10

1-YG Бренд

2 - Обрабатываемый материал

1 **К**Чугун или № Цвет, сплавы М Нержавеющая сталь 2 . 3 РСталь . 4 **S** Суперсплавы 5 **К**Чугун или № Цвет. стлавы М Нержавеющая сталь или 6 **Универсальный** 7 **Р** Сталь 8 **Универсальный**

4 & 5 — Применяемость

Обозначение Износостойкий сплав 05 Стабильные Стабильная продолжительная условия обработка Финишная обработка 15 20 Сбалансированный Средние сплав. Высокая универсальность 25 30 35 40 Прочный сплав. Прерывистая черновая обработка 45

3 — Версия сплава

(6) — (Вариации)

G — Версия с желтым покрытием

Обзор инструмента

Диаграммы токарных сплавов

Скорость: Vc(м/мин.) Подача : Fn (мм/об.)

7/GTURN

Обзор инструмента

Токарные сплавы

	карные плавы	Р Сталь	М Нержавеющая сталь	К Чугун	N Цвет, сплавы	5 Суперсплавы
-	Diabo	P10 P20 P30 P40	M10 M20 M30	K10 K20 K30	N10 N20	S10 S20
	YG1010			1010		
	YG1001	1001		1001		
CVD.	YG3010	3010		3010		
CVD	YG3015	3015				
	YG3020	3020				
	YG3030	3030	3030			
	YG801	801				
	YG211		211			
PVD	YG213		213			
	YG214		214			214
	YG401					401
DLC	YG100		(PD)		100	
+	YG10		BKU		10	

7GTURN

НЫ ИНФОРМАЦИЯ НЫ ИНФОРМАЦИЯ

Обзор инструмента

Токарные сплавы

YG3020 P15-P30	EVIDATION ALLO.	 Для обработки стали Оптимальное соотношение износостойкости и прочности Низкий коэффициент трения поверхностного слоя
YG3030 P20-P35 M10-M30	CVOTICN-AI,O,	Прерывистая обработка стали и нержавеющей стали Основа идеально подходит для черновой обработки стали и низкоуглеродистых сплавов на тяжелых режимах Высокоскоростная обработка нержавеющей стали
YG801	PVD - TIAIN	Для углеродистых сталей при низких скоростях обработки - Рекомендуется для обработки стали, в т.ч. нержавеющей, а также для операций растачивани: - Специальное покрытие PVD для непревзойденной износостойкости
YG211 M05-M25	. PVD ⊤TAIN	Оптимален для обработки нержавеющей стали • Чистовая обработка нержавеющей стали
YG213 M20-M35	PVD - TIÁIN	Универсальный сплав для обработки нержавеющей стали на низких режимах • Оптимален для обработки нержавеющей стали на низких скоростях • Для резания на средних и низких скоростях
YG214 M30-M40 525-S30	PVD - TIÁIN	Прерывистая обработка нержавеющей стали • Для прерывистой обработки нержавеющей стали на тяжелых режимах • Минимализирован риск механических повреждений и сколов
YG401 510-520	PVO - TIAIN	Токарный сплав с PVD покрытием для Жаропрочных Суперсплавов Высокотермостойкая структура TIAIN для превосходной износостойкости Ультрамелкозернистая твердосплавная основа значительно повышает твёрдость, термостойкость и сопротивление ударным нагрузкам Более гладкая поверхность и новый процесс нанесения покрытия позволяет режущей кромне терять остроту
YG100 N05-N25	T DIE	Для обработки алюминия с покрытием DLC Покрытие DLC сводит к минимуму тенденцию образования нароста на режущей кромке Увеличивает стойкость инструмента при обработке цветных металлов
YG10	Uncoated	Сплав без покрытия для обработки алюминия Основа из субмикронного твердого сплава, повышающего износостойкость Полированная поверхность обеспечивает защиту от образования нароста на режущей кромке

Обзор инструмента

Стружколомы для негативных пластин

M K	N S			Подача Fn (мм/о 0 0.1 0.2 0.3 0.4 0.5 0.6
•		UF _	Чистовая обработка	Fn 0.05~0.25 Ap 0.5~2.5
•		UL (Получистовая обработка и обработка вязких материалов 0,1	Fn 0.1~0.3 Ap 1.0~3.0
		UM [Для умеренных и нестабильных условий 0.13	Ap 1.0~3.0
,		UG (Оптимальный выбор для умеренных (стабильных)условий 0.23	Fn 0.2~0.4 Ap 1.5~3.0
К		uc 🎉	Черновая обработка при умеренных условиях, идеально 0,2 для обработки чугуна	Fn 0.2-0.4 Ap 1.5~4.0
К		UR (Черновая обработка и прерывистое резание на тяжелых 0.35 режимах	Fn 1.3-0.5 Ap 2.0~5.0
к		MA	Чугун, черновая обработка на тяжелых режимах	Fn 0.15-0.50 Ap 1.0~5.0
м	s	MF 🧸	Чистовая обработка нержавеющей стали 18°	Fn 0.07-0.30 Ap 0.2~1.5
м	s	мм 🧾	Умеренные условия о.17 для Нержав. стали	Fn 0.20-0.35 Ap 1.0~3.5
M	s	MG 🧸	Умеренные условия для обработки Нержавеющ стали	F0 0.20-0.40 Ap 1.0-4.0
м	s	MR 🧸	Черновая об-ка Нержавеющей стали 0.40	Ap 1.8~5.5
				0 1 2 3 4 5 6 Глубина резания Ар (м

7/GTURN

Обзор инструмента

Стружколомы для негативных пластин

Обзор инструмента

Стружколомы для позитивных пластин

Руководство по применению

Справочник по материалам

Рекоммендации по выбору сплава основаны на состоянии материала заготовки

Твердый

7/GTURN

Предварительная механическая обработка

Без корки

Равномерная твердость по материалу Стабильные условия обработки

Сварка

Мягкая/Без корки Сварной шов может иметь твердость, отличную от основной детали Обработка с ударными нагрузками

YG303

Литье

Жесткая корка Могут быть песочные вкрапления Неравномерный припуск

Может иметь неравномерный припуск

Горячий прокат Мягкая/Без корки

Ковка

Мягкая корка Подвергается первичной термообработке для у Может иметь неравномерный припуск

Подвергается первичной термообработке для уменьшения твердости

Стружколом, Подача и Глубина резания

Руководство по применению

Справочник по материалам - Сталь

P	Нелегированная сталь, Около 0.15% С (низкоуглеродистая сталь)									
VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ
1	S15C	CK15	1.0401	1015	1350	XC18	C15	F.1110	080M15	15

Оптимальный выбор сплава

YG3010 - Vc 330м/мин(1,080ft/min) YG801 - Vc 170м/мин(560ft/min)

P	Нелегированная сталь, Около 0.45% С (Среднеуглеродистая сталь)										
VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ	
2~3	S45C	C45	1.0503	1045	1672	XC42H1TS	C45	F.1140	060A47	45	

Оптимальный выбор сплава

YG3010 - Vc 330м/мин(1,080ft/min) YG801 - Vc 170м/мин(560ft/min) Руководство по применению

Справочник по материалам - Сталь

P	Низколегированная сталь									
VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ
6~9	SCM440	42CrMo4	1.7225	4140	2244	42 CD 4	42CrMo4	F.1252	708M40	38XM

Оптимальный выбор сплава

YG3020 - Vc 240м/мин(790ft/min)

P		Высоколегированная сталь, Инструментальная сталь										
VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ		
10~11	SKD11	X155CrVMo121	1.2379	D2	2310	Z160CDV12	X165CrMoW12KU	F.5318	BD2	Х12МФ		

Оптимальный выбор сплава

YG3020 - Vc 230м/мин(750ft/min)

Руководство по применению

Справочник по материалам - Нержавеющая сталь

M	Ферритная / Мартенситная нержавеющая сталь									
VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ
12~13	SUS430	X6Cr17	1.4016	430	2320	Z8C17	Z8C17	F.3113	430S15	12X17

Оптимальный выбор сплава

Ферритная нержавеющая сталь YG3030 - Vc 200м/мин(660ft/min) YG213 - Vc 160м/мин(520ft/min) Мартенситная нержавеющая сталь YG3030 - Vc 160м/мин(520ft/min) YG213 - Vc 130м/мин(430ft/min)

M		Аустенитная нержавеющая сталь										
VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ		
14	SUS304	X5CrNi18 9	1.4350	304	2332	Z6CN18 09	X5CrNI18 10	F.3551	304S15	03X18H11		

Оптимальный выбор сплава

YG3030 - Vc 180м/мин(590ft/min) YG213 - Vc 140м/мин(460ft/min) Руководство по применению

Справочник по материалам - Чугун

K					Серы	й чугун				
VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ
15~16	FC250	GG25	0.6025	A48 40 B	0125	Ft 25 D	G25	FG25	Сплав 260	C425

Оптимальный выбор сплава

YG1010 - Vc 370м/мин(1,214ft/min)

VDI	JIS	DIN	Mat'l No.	AISI/ASTM	SS	AFNOR	UNI	UNE	BS	ГОСТ
17~18	FCD500	GGG50	0.7050	80-55-06	0.7050	FGS 500-7	GS 500-7	FG E50-7	SNG 500-7	B450-2

Оптимальный выбор сплава

YG1010 - Vc 230м/мин(755ft/min)

Руководство по применению

Справочник по материалам - Жаропрочные суперсплавы

S				Су	перспла	вы и Тит	ан			
VDI	DIN	Mat'l No.	AISI/ASTM	AFNOR	BS	UNS	Марки	UNE	BS	FOCT
31~37	NiCr19Fe19NbMo	2.4668	5383	NC19eNB	HR8	N07718	Inconel 718	F.3113	430S15	ХН45МВТЮБР

Оптимальный выбор сплава

YG401 - Vc 50м/мин(164ft/min)

7GTURN

Руководство по применению **Шероховатость поверхности**

00

Выявление и устранение неполадок

Образец	Причины	Решения
Вибрации	- Высокие силы резания - Нестабильные условия	 - Снизить глубину резания (ар) - Использовать более острый стружколом - Проверить стабильность и положение инструмента и заготовки. - Уменьшить вылет
Грубая поверхность	- Слишком высокая подача для радиуса при вершине	 Использовать другой стружколом Снизить глубину резания (ар) Снизить подачу

Теоретическая шероховатость поверхности

		1	Радиус угла пла	стины ISO (ANS	0	
Ra / Rz µm (µ Дюйм)	02 (0)	04 (1)	08 (2)	12 (3)	16 (4)	24 (6
		Cı	корость подачи	мм/об. (Дюйм/о	б.)	_
0.4 / 1.6	0.05	0.07	0.1	0.12	0.14	0.18
(16 / 64)	(.002)	(.003)	(.004)	(.005)	(.006)	(.007)
1.6 / 6.3	0.1	0.14	0.2	0.25	0.28	0.35
(64 / 256)	(.004)	(.006)	(.008)	(.010)	(.011)	(.014)
3.2 / 12.5	0.14	0.2	0.28	0.35	0.4	0.49
(128 / 512)	(.006)	(.008)	(.011)	(.014)	(.016)	(.019)
6.3 / 25	3	0.28	0.4	0.49	0.57	0.69
(250 / 1000)		(.011)	(.016)	(.019)	(.022)	(.027)
8/32 (320/1280)	-	1	0.45 (.018)	0.55 (.022)	0.64 (.025)	0.78

Руководство по применению

Выявление и устранение неполадок

7GTURN

Руководство по применению

Выявление и устранение неполадок

Образец	Причины	Решения
Обычный износ по задней поверхности пластины Истирание задней поверхности пластины	- Желаемый вид износа - Последовательный и предсказуемый - Характерен при нормальной эксплуатации	
Быстрый износ по задней поверхности пластины Истирание задней кромки за короткий промежуток времени	Сплав - Недостаточная износостойкость - Слишком прочный сплав Нагрев - Слишком высокая скорость резания - Недостаточная подача СОЖ	 Использовать более износостойкий сплав Снизить скорость резания (Vc, SFM, RPM или SFPM) Оптимизировать подачу СОЖ Увеличить подачу (Fn), если она низкая
Пластическая деформация Деформация кромки	- Избыточная тепловая нагрузка - Избыточная механическая нагрузка	- Уменьшить температуру в зоне резания - Использовать более износостойкий сплав - Снизить скорость резания (Vc, SFM, RPM или SFPM) - Уменьшить подачу (Fn) - Уменьшить глубину резания (ар) - Оптимизировать подачу СОЖ
Наростообразование Приваривание частиц обрабатываемого материала к режущей кромке	- Вязкие материалы (низкоуглеродистая сталь, нержавеющая сталь, цветные сплавы, жаропрочные суперсплавы) - Низкая скорость резания	- Повысить скорость резания - Увеличить подачу - Использовать стружколом с острой геометрией - Подача СОЖ под высоким давлением - Использовать сплавы с покрытием PVD - Использовать позитивные пластины
Образование лунок	Нагрев - Слишком высокая скорость резания - Слишком прочный сплав	- Уменьшить температуру в зоне резания - Снизить скорость ре зания (Vc, SFM, RPM или SFPM) - Скорректировать подачу (Fn) - Использовать более износостойкие сплавы

Руководство по применению

Выявление и устранение неполадок

Образец	Причины	Решения
Сколы	- Нестабильные условия обработки (вибрация) - Слишком твердый сплав - Геометрия пластины не обеспечивает достаточной прочности	- Сфокусироваться на стабилизации условий в процессе резания - Уменьшить вылет - Выбрать более прочный сплав - Использовать более прочный стружколом
Термические трещины	- Резкие температурные колебания - Неравномерный подвод СОЖ	- Выбрать более прочный сплав - Уменьшить скорость резания (Vc, SFM, RPM or SFPM) - Уменьшить подачу (Fn) - Обеспечить подвод достаточного количества СОЖ или работать без
Бороздка	- Корка на поверхности заготовки	- Использовать более износостойкий сплав - Уменьшить скорость резания (Vc, SFM, RPM or SFPM) - Отрегулировать подачу (Fn) - Оптимизировать подачу СОЖ - Уменьшить глубину резания (ар) - Использовать более прочный стружколом
Разрушение (Механическая поломка пластины)	- Слишком жесткий сплав - Прерывистое резания - Нестабильные условия обработки (вибрация) - Слишком сильная механическая нагрузка (подача/глубина резания) - Низкая скорость резания - Включения в обрабатываемом материале	- Снизить подачу (Fn) или глубину резания(ар) - Выбрать более прочный сплав - Уменьшить вылет и проверить стабильность закрепления инструмента заготовки - Увеличить скорость резания (Vc, SFM, RPM or SFPM)
Длинная стружка адарата да	- Очень низкая подача для стружколома - Недостаточная глубина резания - Соотношение(Fn x Ap) слишком мало	- Увеличить подачу (Fn) - Использовать более острый стружколом - Увеличить глубину резания - Использовать инструмент с меньшим радиусом при вершине

Обзор сменных пластин для токарной обработки

Негативные пластины

	Форма	Серии					Pa	змер							Стр
		CNMA						1204				1606	1906		
C		CNMG			0903	0904		1204				1606	1906	2509	27
		CNGG						1204							
		CNMM											1906		
		DNMA							1504	1506					Ē
		DNMG					1104		1504	1506					3
D		DNGG							1504	1506					
	D	DNUX							1504	1506		4.			3
K		KNUX									1604				3
s		SNMA						1204		1506			1906		
3		SNMG						1204					1906	2509	3
		SNMM												2507 2509	
	A	TNMA									1604				4
T		TNMG		74		5					1604			2204	
	A	TNUX				U	IL	6			1604				4
v		VNMA									1604				4
V		VNMG									1604				, i
	A	WNMA		0804											
W		WNMG	0604	0804											4
		WNGG		0804											

Позитивные пластины

	Форма	Серии					Разм	ер						Стр.
C		CCGT	0602			09T3					1204			53
		CCMT	0602			09T3					1204			55
D		DCGT		0702						11T3				55
U		DCMT		0702	, 1					11T3				
R	0	RCMT	0602		0803		10T3				1204			57
•		SCGT				09T3								58
S		SCMT				09T3					1204			30
T	A	TCGT						1102				16T3		59
•		TCMT						1102				16T3		
V		VBMT											1604	60
A		VCGT / VCMT							1103				1604	61

Токарная обработка - Сменные пластины - Негативные

CNMG / CNMA (угол при вершине 80° Негативные)

									C	ерия	-		L		IC		5	5
		70	2.						CN*	* 09	03		8.0	5	9.53	0	3.	.18
	1.7	1	T						CN*	* 09	04		8.0	5	9.53	0	4.	.76
	i			П					CN*	* 12	04		12.0	0	12,70	Ю	4.	.76
								_		* 16	200		16.00		15.87		-	.35
	-	4/							CN*	* 19	06		19.00	0	19.05	0	6.	.35
		Y	-	S			_	•: Ho	мен	слату		пози				я по д	оп. з	ак
				Артику	ул: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	510	M30 520	530	510	N20	N
	CNMA CNMG	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	1
		CNMA 120404	0.4	0.15 ~ 0.50	0.5~5.0	0894	0089	0354										
		CNMA 120408	0.8	0.15 ~ 0.50	1.0~5.0		0010	0355										
	(CNMA 120412	1.2	0.15 ~ 0.50	1.5~5.0	0766	0011	0356										
MA		CNMA 120416	1.6	0.15~0.50	2.0~5.0	1207	1188	1314										
IAIW	Чугун	CNMA 160612	1.2	0.15 ~ 0.50	1.5~5.0	0881	0012	0357										
	7.7.	CNMA 160616	1.6	0.15 ~ 0.50	2.0~5.0	0937	0446	0447										
		CNMA 190612	1.2	0.15 ~ 0.50	1.5~9.0		0989	0990										
		CNMA 190616	1.6	0.15~1.00	3.0~10.0	0	0448	0449										
		CNMG 120404 - UF	0.4	0.05 ~ 0.25	05~25			0178		0179	0180	0003						
116		CNMG 120408 - UF	0.8	0.05 ~ 0.25	1.0~2.5			0189	1027	0190	0191							
UF		CNMG 120412 - UF	1.2	0.05 ~ 0.25	15~25			1349	IT	•	1350							

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа			17.7	52.5	1000	7037	200		100	1001	Section	3030 Max	150	7.7	1. 2	211 Max	10.00	213 Max	57.5	214 Max	YG Min	87.5	100	100 Max		310 Max
	1~5	Нелегированная сталь		-	220	480	170	450	170	410	180	380	150	350	120	200	-				7.		-			•		
P	6~9	Низколегиров. сталь		•	220	420	180	380	130	360	110	350	90	300	70	200	-	-5		1		1.				•		
	10~11	Высоколегир. сталь	-				100	330	80	310	60	300	70	250			•	•			-					i.		
М	12~13	Феррит. и мартен. сталь		-	-		12	*					120	230		-	130	230	110	180	80	150	-		e.	-		131
IVI	14	Аустенит, нержав, сталь			-	1.0			9		-		80	200		+	100	200	40	130	30	120	-					
	15~16	Серый чугун	200	480	170	420	120	300	-	7	0	-	7	رک	-	-	-	9	÷	-	÷	÷	-	5	÷	à,	-	+
K	17~18	Высокопрочный чугун	150	450	120	410	120	280			-				2	4.1	-	-					-	120				
N	21~30	Алюминий			-	•	16	-	-		-					-	ō-				•	•	-		350	1200	250	800
S	31~37	Суперсплавы и Титан	-		-	•		-	-	-	-	*	35	80	+		30	90	20	40	20	40	40	85		191	3	-
H	38~41	Высокотв. материалы		100	00		10				-		-			4		-							4.		14	

7GTURN

Токарная обработка - Сменные пластины - Негативные

CNMG / CNMA (угол при вершине 80° Негативные)

									C	ерия	1		L		IC		S	i
		70	,						CN*	* 09	03		8.05		9.53	0	3.1	18
	- L		T						CN*	* 09	04		8.05		9.53	0	4.7	76
	- 3			H					CN*	* 12	04		2.00		12.70	0	4.7	76
		ĭ		Н					CN*	* 16	06	- 7	6.00	- 4	15.87	5	6.3	35
		4./							CN*	* 19	06	- 1	9.00		19.05	0	6.3	35
	4	\$/ -L-	-	s				•:H	омен	клату	рная	пози	ция ():По	зиция	я по д	оп. з	аказ
				Артику	n; 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	CNMG	Обозначение	RE	Fn (мм/об.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		CNMG 090308 - UL	0.8	0.10~0.30	1.0 ~ 2.5			1211		1328	1212							
		CNMG 090312 - UL	1.2	0.10~0.30	1.5~2.5			1274		1270								
	Torrest.	CNMG 090408 - UL	0.8	0.10~0.30	1.0~2.5			1338		1335								
-UL	Обработка вязких	CNMG 090412 - UL	1.2	0.10~0.30	1.5~2.5			1339		1336								
	материалов на низких режимах	CNMG 120404 - UL	0.4	0.10~0.30	0.5 ~ 3.0			0358		0359	0524							
	pennina	CNMG 120408 - UL	0.8	0.10~0.30	1.0~3.0			0192		0193	0194							
		CNMG 120412 - UL	1.2	0.10~0.30	1.5~3.0			0201		0202	0203							
		CNMG 120404 - UM	0.4	0.15~0.30	0.5 ~ 3.0		1074	0184		0185	0186							
-UM		CNMG 120408 - UM	0.8	0.15~0.30	1.0~3.0	0897	0338	0114	0843	0100	0140							
-OM	Обработка при умеренных,	CNMG 120412 - UM	1.2	0.15~0.30	1.5 ~ 3.0	Ę	1075	0525		0486	0526							
1	честабильных условиях	c									427							
		CNMG 120404 - UG	0.4	0.20~0.40	0.5 ~ 3.0		1073	0181		0182	0183						T	
		CNMG 120408 - UG	0.8	0.20~0.40	1.0 ~ 3.0	0896		0113	1001	0099		0001						
		CNMG 120412 - UG	1.2	0.20~0.40	1.5~3.0		0685			0199	0200							
-UG	Обработка при	CNMG 160608 - UG	0.8	0.20~0.40	1.5 ~ 5.0		1077	1078		0748	0749							
	умеренных, стабильных	CNMG 160612 - UG	1.2	0.20 ~ 0.40	1.5 ~ 5.0		0791	0530		0508	0531							
	условиях	CNMG 160616 - UG	16	030~050	20~50													

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	100		17.7	20.20	F2.5	339	200	5127	100	3020 Max	100		100	801 Max	12.77	211 Max	1000	213 Max	2.5	214 Max	1995	401 Max	for a	100 Max	1.55	310 Max
	1~5	Нелегированная сталь		-12	220	480	170	450	170	410	180	380	150	350	120	200	1.	•								10		
P	6~9	Низколегиров. сталь	-		220	420	180	380	130	360	110	350	90	300	70	200			-		-					-	ě	ě
	10~11	Высоколегир, сталь		-	, to	-51	100	330	80	310	60	300	70	250					5		(- 2					5	
	12~13	Феррит. и мартен. сталь		121	-	- 31			10				120	230			130	230	110	180	80	150				J 6		•
M	14	Аустенит, нержав, сталь											80	200			100	200	40	130	30	120			3			
v	15~16	Серый чугун	200	480	170	420	120	300	-	-	-	-	-	F	-	-	-	ā,	-	191	á	÷	-	+		19.	9	÷
K	17~18	Высокопрочный чугун	150	450	120	410	120	280		1.					6.		2			(4)			167		14.			
N	21~30	Алюминий			Pai			10		•											-	L.		×i	350	1200	250	800
S	31~37	Суперсплавы и Титан	4	-		-	-	-	E,	(j	-3	-	35	80	8		30	90	20	40	20	40	40	85	3	10	.2	-
H	38~41	Высокотв. материалы	-		62		16	196	· •	16	12			10 .	-		Ğ.			16	1		-	10	,20	78	12	4

0.20~0.60

1229 0534

обработка стали

Токарная обработка - Сменные пластины - Негативные

CNMG / CNMM(угол при вершине 80° Негативные)

									C	ерия	1		L		IC		S	
		7/8),						CN ³	* 09	03		8.0	5	9.53	0	3.	18
			Ţ.						CN ⁴	* 09	04		8.0	5	9.53	0	4.	76
	à								CN ³	* 12	04		12.0	0	12.70	0	4.	76
		ĭ		\vdash				13	CN ³	** 16	06		16.00	0	15.87	5	6.	.35
	-								CN ³	** 19	06		19.00	0	19.05	0	6.	35
	4	w/	-	s -			i	•: Ho	мен	клату	рная	пози	ция ():По	зиция	я по д	юп. з	ака
				Артику	л: 2200	K10	P05 K20	P10 K30	P15		P30 M20	P20	M15			510	N20	
	CNMG	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YGTO
		CNMG 120404 - UC	0.4	0.20 ~ 0.40	0.5 ~ 4.0	0895	0096	0115		0101	0116							
uc		CNMG 120408 - UC	0.8	0.20 ~ 0.40	1.0~4.0	1483	0062	0117		0102	0118							
39	Черновая обработка	CNMG 120412 - UC	1.2	0.20~0.40	1.5~4.0	0873	0088	0119	E	0103	0120							
	чугуна, при умеренных условиях																	
		CNMG 120408 - UR	0.8	0.30 ~ 0.50	1.0 ~ 5.0	1536	1050	0195		0196	0197							
		CNMG 120412 -UR	1.2	0.30 ~ 0.50	1.5 ~ 5.0	0878	1051	0204		0205	0206	0004						
		CNMG 120416 - UR	1.6	0.30 ~ 0.50	2.0 ~ 5.0		1076	0707		0623	0847							
UR		CNMG 160608 - UR	8.0	0.30 ~ 0.50	1.0~5.0		1079	1080		0750	0751							
		CNMG 160612 - UR	1.2	0.30 ~ 0.50	1.5~5.0		0792	0532		0509	0533							
ı	Іерновая обработка	CNMG 160616 - UR	1.6	0.30~0.50	2.0~5.0	0938	0676	0536		0511	• 0537							
		CNMG 190608 - UR	8.0	0.30 ~ 0.80	3.0~9.0			0804		0805	0806							
		CNMG 190612 - UR	1.2	0.30 ~ 0.80	3.0~9.0		0450	0451		0698	0699							
		CNMG 190616 - UR	1.6	0.30 ~ 0.80	3.0~9.0		0480	0481		100000	0735				Ī			
		CNMM 190616-UH	1.6	0.50~1.20	5.0~13					2117								
UH	6 () 6 % - 22 N																	

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	100	1010 Max	1.5	0.00	1600	TVE Z	100		100	300	5.7		150	801 Max	V- 2	211 Max	100	213 Max	577	214 Max	1575	401 Max	1000	100 Max		310 Max
	1~5	Нелегированная сталь		161	220	480	170	450	170	410	180	380	150	350	120	200										•		
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200	-	3		1	-				-	•	ě	
	10~11	Высоколегир, сталь		18	(=0	•	100	330	80	310	60	300	70	250		-		5						.5	P	1.		
м	12~13	Феррит. и мартен. сталь		-191	-	-31	18	*					120	230		-	130	230	110	180	80	150			e.			15
IVI	14	Аустенит, нержав, сталь				L.			9				80	200			100	200	40	130	30	120	-					
	15~16	Серый чугун	200	480	170	420	120	300	-	÷	9	-	-	(4)	-	-	÷	ą.	+	-	-	÷	-	ē	÷	à,	-	+
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	4		-		4		21		-		16.	-				120		, b o.		
N	21~30	Алюминий			-		15	-	-		-						ā.								350	1200	250	800
S	31~37	Суперсплавы и Титан	9	- 9	- i	-		-	2	- 50	-	4	35	80	÷	-	30	90	20	40	20	40	40	85	-	(ya	3	-
H	38~41	Высокотв. материалы		46			100						-			4												-

7/GTURN

Токарная обработка - Сменные пластины - Негативные

CNMG / CNMA (угол при вершине 80° Негативные)

Серия	L	IC	S
CN** 0903	8.05	9.530	3.18
CN** 0904	8.05	9.530	4.76
CN** 1204	12.00	12.700	4.76
CN** 1606	16.00	15.875	6.35
CN** 1906	19.00	19.050	6.35

•: Номенклатурная позиция •: Позиция по доп. заказу

				Арти	кул: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	CNMG	Обозначение	RE	Fn (мм/об.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		CNMG 120404 - MF	0.4	0.07~0.3	0.2~1.5						1237		0609	0613				
		CNMG 120408 - MF	0.8	0.07~0.3	02~15						0652		0538	0539	0627			
-MF	Чистовая обработка	CNMG 120412 - MF	12	0.07 ~ 0.3	0.2~1.5						1025						П	
	- X - 1 - 1 - 1	CNMG 120404 - MM	0,4	0.2~0.35	0.5~3.5						1025		0547	0548				
		CNMG 120408 - MM	0.8	0.2~0.35	1.0~3.5					0360	0188	0			0607			
		CNMG 120412 - MM	1,2	0.2~0.35	15~35					0300	0521	0107			0626			
-ММ		CNMG190608 - MM	0.8	0.2 ~0.35	2.0 ~ 5.0			F			0321		0349	1970	0020			
	аботка нержавеющей али, при умеренных	CNMG190612 - MM	1 1.2	0.2 ~0.35	2.0 ~ 5.0									1370	1934			
	условиях	CNMG190616 - MM		1111	2.0 ~ 5.0					0991	0984				133			
		CNMG 120408 - MG	0.8	0.20 ~ 0.40	1.0~4.0	7	1	T					1490	1491				
-MG		CNMG 120412 -MG	1.2	0.20~0.40	15~4.0	L	U						1493	1494				
		CNMG160608 - MG	1.2	0.2 ~0.5	2.0 ~ 4.0								1921		_	1812		
		CNMG160612 - MG	1.6	0.2 ~0.5	2.0 ~ 4.0										1920	1813		
Стаби	ильные условия об-ки	CNMG160616 - MG	1.6	0.2 ~0.5	2.0 ~ 4.0								1929		1535	1540		
		CNMG190616 - MG	1.6	0.2~0.5	2.0 ~ 5.0										1555	1541		
		CNMG 120408 - MR	0.8	0.3~0.55	2.0~5.5						0594		0540	0541	0608			
-MR	Іерновая обработка	CNMG 120412 - MR	1.2	0.3 ~ 0.55	2.0 ~ 5.5						0840		0610	0614	0628			
		CNMG 120408 - KR	8.0	0.30 ~ 0.60	1.0~5.0	1503	0718	0800										
L/D		CNMG 120412 -KR	1.2	0.30 ~ 0.60	1.5~5.0	0879	0719	1100										
-KR	Черновая обработка	CNMG 160612 -KR	1.2	0.30 ~ 0.60	1.5 ~ 6.0	1504	,	1092										
	чугуна	CNMG 160616 -KR	1.2	0.30 ~ 0.60	1.5 ~ 6.0	1588		1094										

	Скор	ость резания												Vo	(M	/MN	н.)											
ISO	VDI	Подгруппа	0.37	1010 Max	YG'	1,517.0	Page 1	330	100	5.5	100		100	5.25	100	100	1779	211 Max	1000	213 Max	7.7	214 Max	PACE.	401 Max	live.	100 Max	. 63	G10 Max
	1~5	Нелегированная сталь		18	220	480	170	450	170	410	180	380	150	350	120	200	14	•				•			•	1.		•
P	6~9	Низколегиров, сталь	3		220	420	180	380	130	360	110	350	90	300	70	200			12	÷	-				(0)	-	÷	
	10~11	Высоколегир. сталь				. ş	100	330	80	310	60	300	70	250				•		. •						-		-
M	12~13	Феррит. и мартен. сталь		151				*		•		- 21	120	230			130	230	110	180	80	150				-		
IVI	14	Аустенит, нержав, сталь											80	200			100	200	40	130	30	120						
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	-	-	7	12	÷	8	-		ē.	-	PT.	ú.	÷	-	+	7	-	9	+
N.	17~18	Высокопрочный чугун	150	450	120	410	120	280		4	3				6.					360	-		10		4.			
N	21~30	Алюминий			14			10					0-0								-	L.		*1	350	1200	250	800
S	31~37	Суперсплавы и Титан	4	8		-	9	-	ē,	-	-3	-	35	80	8		30	90	20	40	20	40	40	85	3	10	.3	-
H	38~41	Высокотв. материалы			-2				· •	16	-	•		Tob.							-	-	-		40	76		

Токарная обработка - Сменные пластины - Негативные

CNMG / CNMA (угол при вершине 80° Негативные)

									C	ерия			L		IC		5	
		78),						CN*	* 09	03		8.0	5	9.53	10	3.	18
			T						CN*	* 09	04		8.0	5	9.53	10	4.	.76
		ic O							CN*	* 12	04		12.00)	12.70	00	4.	.76
				H					CN*	* 16	06		16.00	0	15.87	75	6.	.35
		/							CN	* 19	06		19.0	0	19.05	50	6.	35
		-L-	-	s				•: H	омен	клату	рная	пози	ция ():По	зици	я по д	юп. з	ак
				Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N
	CNGG CNMG	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	1010
		CNGG 120404 - SF	0.4	0.10~0.30	0.2~0.3											1291		
SF		CNGG 120408 - SF	0.8	0.10~0.30	0.2~0.3											0943		
-	Чистовая об-ка жаропрочных суперсплавов																	
		CNMG 120408 - SM	0.8	0.10~0.25	0.5 ~ 4.0								1088	1089	O 1395	1189		Ī
SM		CNMG 120412 - SM	1.2	0.10~0.25	0.5 ~ 4.0								•	1394		1292		
	Обработка																	
	жаропрочных сплавов ои умеренных условия				5													
		CNMG 120408 - SR	0.8	0.10~0.40	0.5 ~ 4.0											0945		
SR		CNMG 120412 - SR	1.2	0.10~0.40	0.5 ~ 4.0											1279		
H	Черновая обработка жаропрочных сплаво						b											

	Скор	ость резания												Vo	(M	ми	н.)											
ISO	VDI	Подгруппа	1300		17.50		10.70		17.72		100		2.0	8030 Max	675		YG:	00.5	100	213 Max	20. Y	214 Max	YG Min	3515	100	100 Max	1000	G10 Max
	1~5	Нелегированная сталь	-	2	220	480	170	450	170	410	180	380	150	350	120	200	100	-	10		=			*	~	-	-	
P	6~9	Низколегиров. сталь	*	*	220	420	180	380	130	360	110	350	90	300	70	200			4	-	4		-	-		4	-	16
	10-11	Высоколегир. сталь		•			100	330	80	310	60	300	70	250	÷	9.	-	-					-			-		-
М	12~13	Феррит. и мартен. сталь	-	+	r	- 9		+	-	1/2	-	9	120	230	*	н	130	230	110	180	80	150	-	7		+	-	-
IVI	14	Аустенит. нержав. сталь	-		6-0	-			4			4	80	200	*	*	100	200	40	130	30	120		*		14	-	
ĸ	15-16	Серый чугун	200	480	170	420	120	300	100		-			Leu		-	pēa	-	-		-	*	-	-			17	-
^	17~18	Высокопрочный чугун	150	450	120	410	120	280		•	-	30	+	-	+	4		-			4	-	-	-	+	4	-	-
N	21-30	Алюминий	-	4	-	4	4		2	4	-	21	2	4	4	4	-	2	2	-	2	-6	ě	*	350	1200	250	800
S	31-37	Суперсплавы и Титан		-	. ÷.	-	-		į.		Ę,	,	35	80	÷		30	90	20	40	20	40	40	85	-	100	-	-
H	38~41	Высокотв. материалы		-		-					-			-			-				-						-	

Токарная обработка - Сменные пластины - Негативные

CNMG / CNMM (угол при вершине 90° Негативные)

Серия	IC	S
CN** 2509	25.40	9.52

7/GTURN

				Артику	ул: 2200	K10	P05 K20	●: Ho P10 K30		-	рая Р30 М20		M15		M40		юп. за N20	
	CNMG	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
- UR		CNM G 250924- UR	2,4	0. 3 5 ~1.2	5.0~12			1688		1687	1464							
	Сталь чугун рновая обработка																	

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	12.70	13.00	1.7	1001 Max	1600			5.50	100	200	100	3323	300	801 Max	100	211 Max	400	213 Max	2.2	214 Max	115	401 Max	100	100 Max	100	G10 Ma
	1~5	Нелегированная сталь			220	480	170	450	170	410	180	380	150	350	120	200	J.				3	•	1-1			•		•
P	6~9	Низколегиров, сталь	-		220	420	180	380	130	360	110	350	90	300	70	200					181					•	-	
	10~11	Высоколегир. сталь			u.		100	330	80	310	60	300	70	250		-								•				
М	12~13	Феррит. и мартен. сталь		121	-	-31			10				120	230		-	130	230	110	180	80	150	191	-			-	
IVI	14	Аустенит, нержав, сталь	٠			L.				÷			80	200		-	100	200	40	130	30	120		-				
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	-2	-	-	-	-	-	-		2	-	10	-	(5)	÷	÷	(7)	÷	E	-
•	17~18	Высокопрочный чугун	150	450	120	410	120	280					-				14	· 6.			-		(a.			•		
N	21~30	Алюминий			0.0	-	-						-	•		-		•	-		•				350	1200	250	800
S	31~37	Суперсплавы и Титан	19.	9			-	-			9	-	35	80	-		30	90	20	40	20	40	40	85		-	-	-
H	38~41	Высокотв. материалы	-	100	100		16						-										6		4		1	10

7/GTURN

Токарная обработка - Сменные пластины - Негативные

DNMG / DNMA (угол при вершине 55° Негативные)

ł	Серия	L	IC	5
Ī	DN** 1104	9.67	9.53	4.76
	DN** 1504	14.00	12.70	4.76
	DN** 1506	14.00	12.70	6.35

 Номенклатурная позиция 	0:	Позициа	по поп	Sakasy

				Артику	л: 2200	K10	K20	K30	P15	P20	M20	P20	510	520	530	S10	N20	N20
	DNMA DNMG	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		DNMA 150404	0.4	0.10~0.50	1.0~5.0	1558	1505	1506										
	100	DNMA 150408	0.8	0.15 ~ 0.50	1.0 ~ 5.0	1559	0573	0574										
		DNMA 150412	1.2	0.15~0.50	1.5 ~ 5.0	1421	0575	0576										
.MA	Чугун	DNMA 150604	0.4	0.10~0.50	1.0 ~ 5.0	1581	1445	1447										
	чугун	DNMA 150608	0.8	0.15~0.50	1.0 ~ 5.0	1557	0091	1129										
		DNMA 150612	1.2	0.15~0.50	1.5~5.0	1422	0092	1130										
		DNMG 150404 - UF	0.4	0.05~0.25	0.5 ~ 2.5			0363	4	0364	0365	0016						H
		DNMG 150408 - UF	0.8	0.05 ~ 0.25	1.0~2.5			0856	1030	0774	0857							
		DNMG 150412 -UF	1.2	0.05~0.25	1.5~2.5			1450			1383							
-UF	Unanana afantama	DNMG 150604 - UF	0.4	0.05~0.25	1.0~2.0	П	H	0225		0226	0227	0018						
	Чистовая обработка	DNMG 150608 - UF	0.8	0.05 ~ 0.25	1.5~3.5			0231			0233							
		DNMG 150612 -UF	1.2	0.05~0.25	1.5~2.5			1385		1369	1386							
		DNMG 110404 - UL	0.4	0.1 ~ 0.3	0.5~2.5			1239		1240	1241							
		DNMG 110408 - UL	0.8	0.1 ~ 0.3	1.0~2.5			1242		1243	1244							
		DNMG 150404 - UL	0.4	0.10~0.3	0.5 ~ 3.0			0686		0687	0708							
0555	Lucia de	DNMG 150408 - UL	0.8	0.10 ~ 0.3	1.0~3.0			0489	1028	•	0505							
-UL	Обработка вязких	DNMG 150412 - UL	1.2	0.10 ~ 0.3	1.5~3.0			0709		1108								
	материалов на низких режимах	DNMG 150604 - UL	0.4	0.1 ~ 0.3	0.5~3.0			0369	1025	0370	•							
		DNMG 150608 - UL	0.8	0.1 ~ 0.3	1.5~3.0			0237		0238	•							
		DNMG 150612 - UL	1.2	0.10~0.3	1.5~3.0			0246			0248							

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа			15.5	200	COL	NE E	100	3015 Max	100	100	5.05		150	801 Max	1	211 Max	10 mm	213 Max	577	214 Max	1500	87.5	100	100 Max	4.4	G10 Max
	1~5	Нелегированная сталь		-	220	480	170	450	170	410	180	380	150	350	120	200		- 31		-		•	-					
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200	-	-3		1	-	•				•		
	10~11	Высоколегир, сталь				•	100	330	80	310	60	300	70	250				.5								Į.	-	
М	12~13	Феррит. и мартен. сталь		- 1	-	- •	78	*					120	230		-	130	230	110	180	80	150	-					131
IAI	14	Аустенит, нержав, сталь				L(v)		-	•		-		80	200			100	200	40	130	30	120	-				-	
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	7	0	-	÷	(2)		-	-	-91	÷	-	÷	÷	-	5	-	à,	-	-
n	17~18	Высокопрочный чугун	150	450	120	410	120	280	-		-	4		-	2			- 2					-	120			-	
N	21~30	Алюминий			-	•	16	-	-								ā-	•					-		350	1200	250	800
S	31~37	Суперсплавы и Титан	-			•	ē	-	-	5	-	*	35	80	+	+	30	90	20	40	20	40	40	85	1-0	194		- 2
H	38~41	Высокотв. материалы	120	100	00		16			14			-	•		4						-					-	-

Токарная обработка - Сменные пластины - Негативные

DNMG / DNMA (угол при вершине 55° Негативные)

Серия	L	IC	S
DN** 1104	9.67	9.53	4.76
DN** 1504	14.00	12.70	4.76
DN** 1506	14.00	12.70	6.35

7/GTURN

	: Hc	менн	слатур	п кънс	10301	TNN C):110	зиция	HOUL	10п. за	аказу
P05	P10	015	oon	P30	חבש	M15	M30	M40	Sin	Man	Nao

				Артику	n: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15	M30 520	M40 530	\$10	N20	N20
	DNMG	Обозначение	RE	Fn (MM/a6.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	Per	DNMG 150408 - UM	0.8	0.15~0.30	1.0~3.0		1106	0688		0689	0701							
		DNMG 150412 - UM	1.2	0.15~0.30	1.5~3.0		0604	0512		0488	0705							
-UM	Обработка при	DNMG 150604 - UM	0.4	0.15~0.30	0.5 ~ 3.0		1408	1436		1409	1425							
	умеренных, нестабильных	DNMG 150608 - UM	8.0	0.15~0.30	1.0~3.0		1128	•		0241	0242							
	условиях	DNMG 150612 - UM	1.2	0.15~0.30	1.5~3.0		1149	1132		0695	0706							
		DNMG 150404 - UG	0.4	0.20~0.40	0.5 ~ 3.0	1618		1131		0772	1137							T
	101	DNMG 150408 - UG	0.8	0.20~0.40	1.0~3.0	1608	0452			0367	0368	0017						
		DNMG 150412 - UG	1.2	0.20~0.40	1.5~3.0	1514		1107			0704							
-UG	Обработка при умеренных,	DNMG 150604 - UG	0.4	0.20~0.40	0.5~3.0	1619	0.00	0228		0229	•							
	стабильных условиях	DNMG 150608 - UG	0.8	0.20~0.40	1.0~3.0	1609	0453	0234		0235		0019						
		DNMG 150612 - UG	1.2	0.20~0.40	1.5~3.0	1511		0243		0244	•	0012						
	Arm A	DNMG 150408 - UC	0.8	0.20~0.40	1.0~4.0	1611	0577	•	1273		0700							
V. 10a		DNMG 150412 - UC	1.2	0.20~0.40	1.5~4.0	1512			12,5	1168		П						
-UC	Черновая обработка	DNMG 150608 - UC	0.8	0.20~0.40	1.0~4.0			0121	1777	0104	•							
	чугуна, при умеренных условиях	DNMG 150612 - UC	1.2	0.20~0.40	1.5~4.0	1509			12/2	0105								
	4	DNMG 150408 - UR	0.8	0.30~0.50	1.0~5.0	1621	1095			1096	•							
	101	DNMG 150412 - UR	1.2	0.30~0.50	1.5 ~ 5.0	1513				1134	•						H	
-UR		DNMG 150608 - UR	0.8	0.30~0.50	1.0~5.0	1622	0691	0692		0693	•							F
	Черновая обработка	DNMG 150612 - UR	1.2	0.30~0.50	1.5 ~ 5.0	•	1258	•		•	0373	0020						

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	6255		CO.		000		THE PERSON NAMED IN	3015 Max	1000		CC Pa		9500		YG Min	700	836	213 Max	10.5	214 Max	6/	370.3	17.	100 Max	100	G10 Max
	1~5	Нелегированная сталь	+	¥	220	480	170	450	170	410	180	380	150	350	120	200						-			+		+	
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200	45			1.4	-	14	é					3
	10~11	Высоколегир, сталь		5		-	100	330	80	310	60	300	70	250				-		.9	-							
М	12~13	Феррит. и мартен. сталь	-	-	0,00		4	-	4		-	(*)	120	230	2		130	230	110	180	80	150	·	-	i er	9	+	-
IVI	14	Аустенит. нержав. сталь		*			*		*		4	*	80	200			100	200	40	130	30	120	*		*	14	4	
v	15~16	Серый чугун	200	480	170	420	120	300		-		-	-	i des	-	-	6-7		9		(-)		9.	-	-	-	-	-
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	e.	-4	-	(e)	-	-	×		1		-	4		-	14		-	-	+	
N	21~30	Алюминий		-		4	5		4	4	2		â		8			*	2	*		2	16		350	1200	250	800
S	31~37	Суперсплавы и Титан			j.			ú.		-			35	80			30	90	20	40	20	40	40	85		i.	-	
H	38~41	Высокотв. материалы							7			19				-											*	

Токарная обработка - Сменные пластины - Негативные

DNMG / DNMA (угол при вершине 55° Негативные)

ı	Серия	L	IC	5
Ī	DN** 1104	9.67	9.53	4.76
	DN** 1504	14.00	12.70	4.76
Ī	DN** 1506	14.00	12.70	6.35

● · HOMOUNTATIVIDUES	позиция (Э. Позициа по	TOT	221/221

				Артику	ул: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	S10	N20	N20
	DNMG	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	1500	DNMG 150404 - MF	0.4	0.07~0.30	0.2~1.5								0848	0771				
		DNMG 150408 - MF	0.8	0.07~0.30	0.2~1.5						0807		0849	0773				
-MF	Чистовая обработка	DNMG 150604 - MF	0.4	0.07~0.30	0.2~1.5								0811	0850				
	нержавеющей стали	DNMG 150608 - MF	0.8	0.07~0.30	0.2~1.5						0813	ī		0859				
	1000	DNMG 150404 -MM	0.4	0.20~0.35	0.5~3.5						0527		•	0552				
	1011	DNMG 150408 - MM	0.8	0.20~0.35	1.0~3.5						0506		•	0514				
GELES.		DNMG 150412 - MM	1.2	0.20~0.35	1.5~3.5						0529		0561	0562				
-MM	Обработка нержавеющей стали,	DNMG 150604 - MM	0.4	0.20~0.35	0.5~3.5						0528		•	0554				
	при умеренных условиях	DNMG 150608 - MM	0.8	0.20~0.35	1.0~3.5						0507		•	0516	0690			
		DNMG 150612 - MM	1,2	0.20 ~ 0.35	1.5~3.5	П					0496		•	0564	0030			
	Ass all	DNMG 150408 -MG	0.8	0.20~0.40	1.0 ~ 4.0						0130		1561	1562	1563			
-MG		DNMG 150608 -MG	0.8	0.20~0.40	1.0 ~4.0								1565	1566	1567			
	Чистовая обработка Нержавеющей стали																	
		DNMG 150408 - MR	0.8	0.30~0.55	2.0~5.5						1036		0914	0808	0809			
	191	DNMG 150412 - MR	1.2	0.30~0.55	2.0~5.5									0930				
-MR	Черновая обработка	DNMG 150608 - MR	0.8	0.30~0.55	2.0~5.5						1037		•	0814	•			
	нержавеющей стали	DNMG 150612 - MR	1.2	0.30~0.55	2.0~5.5						,		•	0862	•			

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа		1010 Max	5.5	277	COX	FVEE	27 . 7	1	100	1997	Sure	3030 Max	150	801 Max	17.7	211 Max	12.5	213 Max	37.7	214 Max	1500	401 Max	1100	100 Max	44.0	G10 Max
	1~5	Нелегированная сталь		-	220	480	170	450	170	410	180	380	150	350	120	200		91					-	•				181
P	6~9	Низколегиров. сталь		•	220	420	180	380	130	360	110	350	90	300	70	200	-		-	1	-	1.		4		•		
	10~11	Высоколегир. сталь				•	100	330	80	310	60	300	70	250									٠			i.		
М	12~13	Феррит. и мартен. сталь		- (2)	-	•	78	*					120	230			130	230	110	180	80	150	-		e.			131
IAI	14	Аустенит, нержав, сталь			-	1.0			9		-		80	200		+	100	200	40	130	30	120	-					
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	7	0	-	÷	(2)	-	-	-	ę	+	-	÷	÷	-	-	÷	- ê,	-	7
•	17~18	Высокопрочный чугун	150	450	120	410	120	280	-		-	4		-	2		-	12		-				120			-	
N	21~30	Алюминий			-0	•	18	-	-		-		-	1			-		-		•				350	1200	250	800
S	31~37	Суперсплавы и Титан	2	-	Ę.	-		-	-	5	-	4	35	80	4	-	30	90	20	40	20	40	40	85	-	(g)	3	-
H	38~41	Высокотв. материалы		-			10	-	-	4			-			4		-						2				

DNMG / DNMA (угол при вершине 55° Негативные)

Серия	L	IC	S
DN** 1104	9.67	9.53	4.76
DN** 1504	14.00	12.70	4.76
DN** 1506	14.00	12.70	6,35

7/GTURN

•: Номенклатурная по	эзиция 🔾 : Позиция по доп. заказу
----------------------	-----------------------------------

				Артику	л: 2200	K10	K20	K30	P15	P20	M20	P20	S10	S20	S30	510	N20	N20
	DNMG	Обозначение	RE	Fn (MM/oб.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	FI	DNGG 150404 - SF	0.4	0.10~0.30	0.2~3.0											1295		
-SF		DNGG 150408 - SF	0.8	0.10~0.30	0.5 ~ 3.0											1293		
-21	Чистовая обработка жаропрочных	DNGG 150604 - SF	0.4	0.10~0.30	0.2~3.0											1296		
	суперсплавов	DNGG 150608 - SF	0.8	0.10~0.30	0.5 ~ 3.0											1294		
	Fall	DNMG 150408 - SM	0.8	0.10~0.25	0.5 ~ 4.0								1417	1412		1300		
		DNMG 150412 - SM	1.2	0.10~0.25	0.5~4.0								1419	1413		1303		
-SM	Обработка	DNMG 150608 - SM	0.8	0.10~0.25	0.5~4.0								1418	1414		1301		
	каропрочных сплавов и умеренных условиях	DNMG 150612 - SM	1.2	0.10~0.25	0.5~4.0								1420	1415		1302		
	101	DNMG 150408 - SR	0.8	0.10~0.40	0.5~4.0			П								1298		
-		DNMG 150412 - SR	1.2	0.10~0.40	0.5~4.0	L	U									1297		
-SR	Черновая обработка жаропрочных	DNMG 150608 - SR	0.8	0.10~0.40	0.5 ~ 4.0											1280		
	суперсплавов	DNMG 150612 - SR	1.2	0.10~0.25	0.5 ~ 4.0											1299		

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	0.00	1010 Max	TO I	250	000	77.5	100		1000		X D		10/5	783	YG: Min	7.7	100/10	213 Max	200	214 Max	6/5	27.3	10.	100 Max	137	G10 Max
	1~5	Нелегированная сталь	+		220	480	170	450	170	410	180	380	150	350	120	200						+	+	*	*		*	
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200	vá.	*			-					14		3
	10~11	Высоколегир, сталь		5	-	-	100	330	80	310	60	300	70	250			+				-							
8.0	12~13	Феррит, и мартен, сталь	-	-	0=0			-	4		-	-	120	230	2		130	230	110	180	80	150	+	-	-:	. 4	+	4
M	14	Аустенит. нержав. сталь		*	*				-		-		80	200			100	200	40	130	30	120	*	÷			-	
v	15~16	Серый чугун	200	480	170	420	120	300	e			-	-		-	-	6-1	Dec.	9		(-)		9	*	-	Te.		- 2-
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	æ.	4	-	191	-	-	×		4		-	*	-				-	+	+	,
N	21~30	Алюминий	-	-			5				4			1	8		*	*	2	*		-	12		350	1200	250	800
S	31~37	Суперсплавы и Титан		•	jê.			úě.				10	35	80			30	90	20	40	20	40	40	85		12		-
H	38~41	Высокотв. материалы	-					-			-				×	-	-				-		+			-	+	

KNUX / DNUX (угол при вершине 55° - 2 Вершины, одностор.)

	(/ DNUX (y		AC IT										Ī		ери	_		LE	_		s
	<i>u</i> . <i>A</i>	A.	2	7	78		3						_		** 1			15			76
	*/	LE —	-			- 8			Ken					_		ция (М15):Поз М30	зици: М40	-	-	
KI	NUX 060	значен	ие	RE	1	Артикул Fn w/oб.)	Ap (MM		€ YG1010	≨ S YG1001	€ YG3010	¥ YG3015	₹ YG3020	₩ YG3030	₹ YG801	S YG211		₩ YG214	YG401	₹ YG100	YGTO
	KNU	X 16040	i L	0.5	0.10	~ 0.40	0.5~	6.0			0249			0251							
UX Левая	KNU	X 160410	L	1.0	0.30	~ 0.60	1.0~	6.0			J247		0230	1315	00/9						
55.	KNU	X 16040	R	0.5	0.10	~0.40	0.5~	6.0			•		•	•	•						
UX Травая 4		X16041	100	1.0		~0.60	1.0~	3.5			0252 • 1358		0253	0254 • 1156	0080						
			1/50											c	ери	Я		LE		IC	
	1	1/	1	-										DNU	X 1	504		13		12.	.7
	IC /							>						DNU	JX 1	506		13		12.	.7
	4/			1	1			7			:Ho	менкл	atvi	эная і	nosui	INA ():Поз	NIINS	по л	оп. за	аказ
	7 L-	•		S	-	Артику	n: 2200	0	K10		² 10		20	P30 M20	P20	M15	M30	M40		N20	
DI	NUX 060:	значені	ie l	RE	F	n /oб.)	Ap (mm)		YG1010		YG3010		YG3020	YG3030	YG801	S YG211	YG213	% YG214	YG401	YG100	YG10
	DNU	X 15040	1L	0.4	0.10	~ 0.35	0.7~	4.0			874		872	1875							
ux	DNU	X 15040	3L	0.8	0.10	~0.35	1.0~	4.0			•		•	•						П	
Певая		X 15060		0.4	- 000	~0.35	0.7~	4.0			876 •		877	1878							
	1 100	X 15060		0.8	20.00	~0.35	1.0~				873		869	1870							
-	7,510	X 150404		0.4		~0.35	0.7~				879 •		871	1880							
6.55		7-35-2		-			3.7	37		_	628		555	1629							
"UX lpaвaя		X 15040		8.0		~0.35	1.0~			1	630	- 1	631	1632					-	-	_
равал		X 150604		0.4		~0.35	0.7~	31.		1	625	1	322	1323		_					
		X 15060	3R	8.0	0.10	~0.35	1.0~	4.0		-	633	1	1000	1634							
Скор	ость резания	VC4040	VOLOCA	VO	20402	/C2045	VOOC	0 1/4		VCO	-	_	1 1	0040	VO	244	VOIC	14 1	10401	V	040
ISO VDI	Подгруппа	YG1010 Min Max		10000			70000000			1000	100	YG21' Min Ma	200	G213 in Max		214 Max	YG40 Min M		G100 lin Ma	2900	G10 1 Ma
1~5	Нелегированная сталь		220 480	170	450	170 410	180 38	0 15	0 350	120 2	200				-		¥	-			*
P 6~9	Низколегиров. сталь		220 420	-				_		70 2	200					-					10
10~11	Высоколегир. сталь			100	330	80 310	60 30			-	9				-	10					
M 12~13	Феррит. и мартен. сталь			×	•	• •		_	20 230	_	-	130 23	_	10 180	_	_		-			4
14	Аустенит. нержав. сталь	* *	* 4	16	(4)			8	0 200		*	100 20	0 4	0 130	30	120		41 6		1	
			470 400	400	000																
K 15~16 17~18	Серый чугун	200 480 150 450		100	-			-			•				,	. 61	-				-

N 21~30 Алюминий

31~37 Суперсплавы и Титан

Н 38-41 Высокотв, материалы

.

÷

.

35 80

. .

30 90 20 40 20

40

40 85

350 1200 250 800

SNMG / SNMM (угол при вершине 90° Негативные)

1	Серия	IC	S
	5N** 1906	19.050	6.35
	SN** 2507	25.400	7.94
	SN** 2509	25.400	9.52

7/GTURN

•: Номенклатурная позиция (🔾 : Позиция по доп. заказу
-----------------------------	----------------------------

				Арти	кул: 2200	К10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 S10	M30 520		S10	N20	N20
	SNMG SNMM	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		SNMG 190612 - UR	1.2	0.35 ~0.6	3.0~10				1006	1018	1026							
ш		SNMG 190616 - UR	1.6	0.35~0.8	3.0~10	1838	1256	1257		1583	1584							
- UR	Сталь чугун	SNMG 250924 - UR	2.4	0.4 ~1.0	5.0 ~ 12.0				1543	1370	1366							
_	0.1111	SNMM 250724 - UT	2.4	0.55~1.3	5.0~12.0	Ħ		1255		0841	0842							
-UT		SNMM 250924-UT	2.4	0.55~1.3	5.0~12.0			1626		1627	1213							
	Черновая обработка																	

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	6.15	010 Max	10.5	1010	Fig.	12.30	100	5.512.5	100	3020 Max	100	35.2E	800	801 Max	27-	211 Max	100	213 Max	0.5	214 Max	PAE	30.3	bec.	100 Max	1.50	G10 Max
	1~5	Нелегированная сталь		-	220	480	170	450	170	410	180	380	150	350	120	200	1.	•		1.		1				1.		•
P	6~9	Низколегиров, сталь	-		220	420	180	380	130	360	110	350	90	300	70	200				•	-					-	ė	•
	10~11	Высоколегир. сталь			.40	-51	100	330	80	310	60	300	70	250		*		•			(·				12	-		- •
M	12~13	Феррит. и мартен. сталь		121	1.	-31						-81	120	230			130	230	110	180	80	150				-6		•
IVI	14	Аустенит, нержав, сталь				Ų.							80	200			100	200	40	130	30	120	12					
v	15~16	Серый чугун	200	480	170	420	120	300	-	-	-	+	190	F	8	-	æ	2	-	191	o ž u		12	+	7	190	19	÷
K	17~18	Высокопрочный чугун	150	450	120	410	120	280			2						5,			100	-		(2)					
N	21~30	Алюминий					-	13					0-0		-						-			*	350	1200	250	800
S	31~37	Суперсплавы и Титан	4			-		. 2	i e	14		3	35	80	Y		30	90	20	40	20	40	40	85			13	-
H	38~41	Высокотв. материалы			12		re	100		16	-	-			-		Ç.,			100	1-	-		-	,20	16	1.2	16.1

SNMG / SNMA (угол при вершине 90° Негативные)

Серия	IC	S
SN** 1204	12.700	4.76
SN** 1506	15.875	6.35
SN** 1906	19.050	6.35

				Аппекч	л: 2200	K10	P05	●: Ho	P15	P20	P30	P20	M15	M30	M40	510		N20
	SNMA SNMG	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	₹ YG1001	S YG3010	YG3015	YG3020	₹ YG3030	YG801	₩ YG211	8 YG213	% YG214	YG401	YG100	YG10
		SNMA 120408	0.8	0.15~0.50	1.0~5.0	0767	0027	1166										
2.5		SNMA 120412	1.2	0.15~0.50	1.5~5.0	0768	0028	1133										
.MA	Чугун	SNMA 150612	1.2	0.15~0.50	1.5~5.0			1150										
	чугун	SNMA 190616	1.6	0.15~1.00	3.0~10.0	1344	1184	1261										
		SNMG 120404 - UF	0.4	0.05 ~ 0.25	0.5~1.5			1458		1459	1454	0029						
-UF		SNMG 120408 - UF	0.8	0.05~0.25	1.0~2.5			1430		1433	1437							
	Чистовая обработка				5													
		SNMG 120404 - UL	0.4	0.10~0.30	0.5~3.0			1167		0747	1194							
-UL		SNMG 120408 -UL	0.8	0.10~0.30	1.0~3.0			0389		0390	0391							
	Обработка вязких материалов на низких режимах																	
		SNMG 120408 - UM	0.8	0.15~0.30	1.0~3.0		0983	0739		0784	0740							
-UM	Обработка при умеренных, нестабильных условиях																	

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа		1010 Max	100	277	1.423	FIRE	200		The second	100	5477	3030 Max	100	801 Max	V	211 Max	100	213 Max		214 Max	YG Min	100	110	100 Max		G10 Max
	1~5	Нелегированная сталь			220	480	170	450	170	410	180	380	150	350	120	200		41			•	ě.	-					181
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200	-	160		-	-	•				•		
	10~11	Высоколегир, сталь				•	100	330	80	310	60	300	70	250												T.		
М	12~13	Феррит. и мартен. сталь			-		18	×					120	230			130	230	110	180	80	150	-		9			131
IAI	14	Аустенит, нержав, сталь				1.0		-			-		80	200	٠	+	100	200	40	130	30	120						
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	7	0	-	Ģ	(2)		-	-	9		-	÷	÷	-	5		j.	-	7
•	17~18	Высокопрочный чугун	150	450	120	410	120	280				4			21		-			*		4		160			-	
N	21~30	Алюминий			-	•	18	-	-		-						ō-						-		350	1200	250	800
S	31~37	Суперсплавы и Титан	2	-		-		-	-	-	-	-	35	80	+	-	30	90	20	40	20	40	40	85			3	9
H	38~41	Высокотв. материалы		40			10	-					-			4		-										

SNMG / SNMA (угол при вершине 90° Негативные)

1	Серия	IC	S
-	SN** 1204	12.700	4.76
	SN** 1506	15.875	6.35
	SN** 1906	19.050	6.35

7/GTURN

		7 - IC	- 8	3 -				•:H	мен	клату	рная	пози	ция 🤇):По	зиция	под	оп. за	аказ
				Артику	/л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	SNMG	Обозначение	RE	Fn (мм/об.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		SNMG 120408 - UG	0.8	0.20~0.40	1.0~3.0	1610	1190	0141		0142	0143	0030						
-UG		SNMG 120412 - UG	1.2	0.20~0.40	1.5~3.0	1640	1164	0258		0259	0260							
Обр	аботка при умеренны табильных условиях	SNMG 120416 - UG	1.6	0.20~0.40	2.0~3.0	1646	1165	0744	0789	1169	1195							
		SNMG 120408 - UC	0.8	0.20~0.40	1.0~4.0	1488	0073	0125		0106	0126							
-UC		SNMG 120412 - UC	1.2	0.20~0.40	1.5~4.0		0074		1		0128							
	ерновая обработка гуна, при умеренных условиях																	
		SNMG 120408 - UR	0.8	0.30~0.50	1.0~5.0	1623	1163	0392		0393	0394							
		SNMG 120412 - UR	1.2	0.30~0.50	1.5 ~ 5.0	1624	1052	0261		0262	0263	0031						
-UR	Черновая обработка	SNMG 120416 - UR	1.6	0.30~0.50	2.0~5.0	1837	0988	0974	0975	0971	0977							
	1727	SNMG 120412 - KR	1.2	0.30~0.60	1.5 ~ 5.0	1064	1063	1065										
-KR		SNMG 120416 - KR	1.6	0.30 ~ 0.60	2.0 ~ 5.0	1208	0730	0950	0965									
-MA	Черновая обработка чугуна																	

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	1000		1	7.76	5			2/1			1	3030 Max	300	200	YG Min		1500	213 Max	250	214 Max	0.0	25.0		100 Max	100	310 Max
	1-5	Нелегированная сталь	-		220	480	170	450	170	410	180	380	150	350	120	200	-	+	-	*	-	5	-	+	0	₩.		+
P	6-9	Низколегиров. сталь	4		220	420	180	380	130	360	110	350	90	300	70	200	Æ.	4	-	*	~	-2	*			*	*	*
	10~11	Высоколегир, сталь		6	0.		100	330	80	310	60	300	70	250							-			-	÷	•		•
М	12~13	Феррит. и мартен. сталь	+	*	-	-	-	-	4		-	-	120	230	*	-	130	230	110	180	80	150	-	+	74		-	*
IVI	14	Аустенит. нержав. сталь		*					(4)				80	200		-	100	200	40	130	30	120						
W	15-16	Серый чугун	200	480	170	420	120	300								-	ě.	-	-	-	i,	-	÷	-				-
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	4	ų.	-	4	-	÷		-	4	-		. 4	-		*		ų.	¥	-	¥
N	21~30	Алюминий	2	*	-	×	1	-	(4)	X.		(2)	-	-	4	-	4	4	-		120	132	4	-	350	1200	250	800
5	31~37	Суперсплавы и Титан	-				-	12				-	35	80		-	30	90	20	40	20	40	40	85				
H	38~41	Высокотв. материалы	-		-		-	-					-			-			-		-			-		•		

SNMG / SNMA (угол при вершине 90° Негативные)

Серия	IC	S
SN** 1204	12.700	4.76
SN** 1506	15.875	6.35
SN** 1906	19.050	6.35

•: Номенклатурная позиция 🔾 : Позиция по доп. заказу

				Артику	1: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 S10	M30 \$20	M40 530	\$10	N20	N20
	SNMG	Обозначение	RE	Fn (MM/06.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		SNMG 120404 -MF	0.4	0.07~0.30	0.2 ~ 1.5								0978	0979	0981			
		SNMG 120408 - MF	0.8	0.07~0.30	0.2~1.5						0818		0653	0654	0817			
-MF	Чистовая обработка нержавеющей стали	SNMG 120412 - MF	1.2	0.07 ~ 0.30	0.2 ~ 1.5						0821		0655	0656	0820			
		SNMG 120408 - MM	0.8	0.20~0.35	1.0~3.5				Ц				0555	0556	1014			
-мм	Обработка	SNMG 120412 - MM	1.2	0.20~0.35	1.5 ~ 3.5								0565	0566				
	нержавеющей стали и умеренных условиях																	
		SNMG 120408 - MR	0.8	0.30~0.55	2.0~5.5						1059		0657	0658	0819			
-MR	Черновая обработка	SNMG 120412 - MR	1.2	0.30~0.55	2.0~5.5		Į.				0823		0659	0660	0822			
	нержавеющей стали	SNMG 120408 -MG	0.8	0.20 ~ 0.40	1.0 ~ 4.0								1804	1805	1806	1695		
-MG	Общего назначения																	
-SM	6	SNMG 120408-SM	0.8	0.10 ~ 0.25	0.5~4.0											1696		
06	работка жаропрочных ов при умеренных усло																	
		SNMG 120408 - SR	0.8	0.10~0.40	0.5 ~ 4.0											1305		
-SR		SNMG 120412 - SR	1.2	0.10~0.40	0.5~4.0											1304		
	Черновая обработка																	

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	0.55	2/2	14.00	17.7		9935	100	55.57	000	7000	5.2	3030 Max	100	801 Max	200	211 Max		213 Max	100 X	214 Max	100	8515	100	100 Max	10000	Max
	1~5	Нелегированная сталь	-	+	220	480	170	450	170	410	180	380	150	350	120	200		-91	-	-	5	~		5	7	-	-	*
P	6~9	Низколегиров. сталь		*	220	420	180	380	130	360	110	350	90	300	70	200		-1		-	-	-			-	-	-	-
	10-11	Высоколегир. сталь		4.			100	330	80	310	60	300	70	250	-	6.	-	-			-							
м	12~13	Феррит. и мартен. сталь	-	4	r =	-91		+	-	*	-	9	120	230	-		130	230	110	180	80	150	-	-		+	-	-
IVI	14	Аустенит. нержав. сталь			100				4	(4)		4	80	200	-	-	100	200	40	130	30	120		*		-	1	-
~	15-16	Серый чугун	200	480	170	420	120	300	5-1		-	-		De0		-	100	-		-	-	*	-	-		-	-	-
K	17~18	Высокопрочный чугун	150	450	120	410	120	280			-	40		-		4		-			4	-	-	~	-	-	+	
N	21-30	Алюминий	12	3	-	- 20	4	-	2		-	529	2	4	12	4	4	21	2	4	2	14		8	350	1200	250	800
s	31-37	Суперсплавы и Титан			. i	3			ē.		-		35	80	-		30	90	20	40	20	40	40	85		(0)	-	-
H	38~41	Высокотв. материалы			-	-					-			-				_								-		

YGTURN

Токарная обработка - Сменные пластины - Негативные

TNMG 160412 - UM

TNMG / TNMA (угол при вершине 60° Негативные)

									C	ерия	1		-		IC		3	
		\60°/							TN*	* 16	04		15.7	7	9.52	.5	4.	76
		×60°×						_	TN*	* 22	04		22.0)	12.70	0	4.	76
	-	*		S — Артику	ул: 2200	K10	P05 K20	●: Ho	омені Р15	слату	рная Р30 M20	ПОЗИ	ция (<mark>М15</mark> S10		зиция <u>М40</u> 530	я по д	цоп. з N20	aka:
	TNMA TNMG	Обозначение	RE	Fn (MM/06.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	A	TNMA 160404	0.4	0.15~0.50	0.5~5.0	1582	1446	1448										
		TNMA 160408	0.8	0.15~0.50	1.0~5.0		0035	•										
MA	Чугун	TNMA 160412	1.2	0.15~0.50	1.5~5.0		0036											
_	A	TNMG 160404 - UF	0.4	0.05~0.25	0.5~2.5			0270		0271	0272	0039						
		TNMG 160408 - UF	0.8	0.05 ~ 0.25	1.0~2.5			0276		0277	0278							
-UF	Чистовая обработка	TNMG 160412 -UF	1.2	0.05~0.25	1.5~2.5			0721		0588	1197							
	чистовая обработка	TNMG 220404 - UF	0.4	0.10~0.35	0.5~4.0			0407		1203	1205	0042						
	A	TNMG 160408 - UL	0.8	0.10~0.30	1.0~3.0				0752	0280								
		TNMG 160412 -UL	1.2	0.10~0.30	1.5~3.0		Ġ			0621								
-UL	Обработка вязких материалов на низких режимах																	
	A	TNMG 160404 - UM	0.4	0.15~0.30	0.5~3.0		0949	0948	0844	0952	0954							
		TNMG 160408 - UM	8.0	0.15~0.30	1.0~3.0		•	0282										
-UM							-		-	121	-							

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	100		17.7	10.00	FOR S	3010 Max	200	5127	100		1000	7.7.7	100	801 Max	1275	211 Max	100	213 Max	2.5	214 Max	P.E	30.3	loc-	100 Max	1986	G10 Max
	1~5	Нелегированная сталь		10	220	480	170	450	170	410	180	380	150	350	120	200	1	•								1.		•
P	6~9	Низколегиров. сталь	-		220	420	180	380	130	360	110	350	90	300	70	200		•	-	•	-			-		-		
	10~11	Высоколегир. сталь			-	-51	100	330	80	310	60	300	70	250				·							Ģ.			
M	12~13	Феррит. и мартен. сталь		121	-	-31		*					120	230			130	230	110	180	80	150						
IM	14	Аустенит, нержав, сталь								-			80	200			100	200	40	130	30	120				•		
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	-	-	-	-	÷	8	-	9	ē	-	191	ú.	÷		+	7	-	,	+
n.	17~18	Высокопрочный чугун	150	450	120	410	120	280		1.5					6.		-			10	-		167		4.			
N	21~30	Алюминий			Fai		-	10						•							-			×.	350	1200	250	800
S	31~37	Суперсплавы и Титан	4	-		-	-		-	-		-	35	80	¥		30	90	20	40	20	40	40	85		10	+	-
H	38~41	Высокотв. материалы	-	-	620	-	-	1961		16	125	-6-		Fu.		-	٠ <u>٠</u> .	6	-	1,61	-			4	20	76	12	

0.15~0.30 1.5~3.0

Обработка при умеренных, нестабильных условиях

1143 0596 0597

0760 0586 0710

TNMG / TNMA (угол при вершине 60° Негативные)

Серия	L	IC	S
TN** 1604	15.7	9.525	4.76
TN** 2204	22.0	12.700	4.76

●: Ho	оменклату	рная г	ТОЗИ	INA C):No	зиция	по	10П. З	аказ
5 P10	DAC DOG	P30	000	M15	M30	M40		Nac	6000

				Артику	л: 2200	KIU	K20		PIS	P20	M20	P20	510	520	530	310	NZU	NZU
	TNMG	Обозначение	RE	Fn (MM/06.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	5	TNMG 160404 - UG	0.4	0.20~0.40	0.5~3.0	1620	0458	0273		0274	0275							
		TNMG 160408 - UG	0.8	0.20~0.40	1.0~3.0	1140	0459	0144	0757	0145	0146	0037						
		TNMG 160412 - UG	1.2	0.20~0.40	1.5~3.0	1142	0605	0606	0759	0587	0939							
-UG	Of and area area	TNMG 220408 - UG	8.0	0.25~0.60	1.0~6.0	1641	1061	0285		0286	0287	0040						
	Обработка при умеренных, стабильных	TNMG 220412 - UG	1.2	0.25 ~ 0.60	1.5~6.0	1642	O 1526	0		0	0							
	условиях	TNMG 220416 - UG	1.6	0.25~0.60	2.0~6.0	1647	1209	0851	0863	0852	1263							
	A	TNMG 160404 - UC	0.4	0.20~0.40	0.5~4.0	1316	0399			0401	0402							
***		TNMG 160408 - UC	0.8	0.20~0.40	1.0~4.0	0901	0075	0129		0108	0130							
-UC	Черновая обработка чугуна, при умеренных	TNMG 160412 - UC	1.2	0.20~0.40	1.5~4.0		0076	•			0132							
	условиях																	
	A	TNMG 160408 - UR	0.8	0.30~0.50	1.0~5.0	0880	0680	0669		0670	1054							
		TNMG 160412 -UR	1.2	0.30 ~ 0.50	1.5~5.0	1657	0602	0404	0888	0405	0406	0038						
-UR	Черновая обработка	TNMG 220412 - UR	1.2	0.30~0.65	1.5~7.0	1639	0408	•		0410	•							
	пернован обработка	TNMG 220416 - UR	1.6	0.30~0.65	2.0~7.0	1658	0460	0461			0711							

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	YG1		7.7	22.7	1000	1000	100		100	300	Sure	3030 Max	150		1. 2	211 Max	12.3	213 Max	37.5	214 Max	YG-	87.5	110	100 Max		G10 Max
	1~5	Нелегированная сталь		-	220	480	170	450	170	410	180	380	150	350	120	200		•					-					
P	6~9	Низколегиров. сталь		•	220	420	180	380	130	360	110	350	90	300	70	200	-	1		-	-	1.		4	-			
	10~11	Высоколегир, сталь				•	100	330	80	310	60	300	70	250		-		-			-			5		1.		19
8.0	12~13	Феррит. и мартен. сталь		-91	-	- 31	15						120	230			130	230	110	180	80	150			e			151
M	14	Аустенит, нержав, сталь			-			-	9	•	-		80	200	٠	-	100	200	40	130	30	120	-					
	15~16	Серый чугун	200	480	170	420	120	300	-	÷	0	8	÷	(4)	-	-	-	Ģ	÷	-	-	÷	-	ē	÷	2	-	+
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	-				4		20		(a)		14.					(2)				
N	21~30	Алюминий			-		16	-	-								ã-	1				(e			350	1200	250	800
S	31~37	Суперсплавы и Титан	2	- 9	-	-	-	-	-	3	=	-	35	80	+	-	30	90	20	40	20	40	40	85	-	191	3	3
Н	38~41	Высокотв. материалы	-	4	000	-	16	-	-	-	-					6	4	-					-					

TNMG / TNMA (угол при вершине 60° Негативные)

	×60°×	
+	A	
ic	(0)	
1		

Серия	L	IC	S
TN** 1604	15.7	9.525	4.76
TN** 2204	22.0	12.700	4.76

7/GTURN

		7	-	S -			,	●:H	мен	слату	рная	пози	ция ():По	зиция	я по д	юп. за	аказ
				Артик	ул: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 S10	M30 520	M40 530	510	N20	N20
	TNMG	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		TNMG 160404 - MF	0.4	0.07~0.3	0.2~1.5								0824	0775	1457			
-MF		TNMG 160408 - MF	0.8	0.07~0.3	0.15~1.5								•	0776	•			
	Чистовая обработка нержавеющей стали																	
_	A	TNMG 160404 - MM	0.4	0.20~0.35	0.5 ~ 3.5								0567	0568				
-MM		TNMG 160408 - MM	8.0	0.20~0.35	1.0~3.5								0569	0570	0913			
	Обработка нержавеющей стали	TNMG 160412 - MM	1.2	0.20~0.35	1.5~3.5								0611	0603				
	и умеренных условия:	x																
	٨	TNMG 160404 - MG	0.4	0.20~0.45	0.5~4.0	7							1455	1456	1219			
-MG	20	TNMG 160408-MG	0.8	0.20 ~ 0.40	1.0 ~ 4.0	5	<u>L</u>						1568	1569	1713	1660		
	Нержавеющая сталь Черновая обработка																	
	Λ	TNMG 160408 - MR	0.8	0.30 ~ 0.55	2.0~5.5						0727		0826	0985	0726			
-MR	10,5	TNMG 160412 - MR	1.2	0.30 ~ 0.55	2.0~5.5						1062		0995	0827	0828			
	Нержавеющая сталь Черновая обработка																	

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	100		1	15.70	FOR S	335	200	5327	100	3020 Max	1000	0.25	100	801 Max	2.77	211 Max	100	213 Max	2.5	214 Max	100 E	30.3	bee.	100 Max	1200	Max
	1~5	Нелегированная сталь		121	220	480	170	450	170	410	180	380	150	350	120	200	1.	•						-	•	1.1	•	•
P	6~9	Низколегиров. сталь	-	•	220	420	180	380	130	360	110	350	90	300	70	200			-					-	į.	-		•
	10~11	Высоколегир. сталь				-51	100	330	80	310	60	300	70	250				•							9.	14		
M	12~13	Феррит. и мартен. сталь		181		- 31		*					120	230			130	230	110	180	80	150						
IVI	14	Аустенит, нержав, сталь											80	200			100	200	40	130	30	120				•		
v	15~16	Серый чугун	200	480	170	420	120	300	-	-	-	-	-	÷	8	-	÷	ē.	>	191	ú.	÷	÷	+	7	13	9	÷
K	17~18	Высокопрочный чугун	150	450	120	410	120	280		1.5	-								12	(a)	-		167		4.			
N	21~30	Алюминий			Pai		-	1.5		•				•			•	•			-			*	350	1200	250	800
S	31~37	Суперсплавы и Титан	4			-	-	-	-	4	-3	-	35	80	8		30	90	20	40	20	40	40	85	3	(*)	÷	-
H	38~41	Высокотв. материалы	-		62		10	100		16	125	4.		Fi.	-	-	Ğ.			1,61	1.	-	2	-	20	18	.2	4

-SF

-SR

-SM

Обработка жаропрочных сплавов при умеренных условиях

TNMG

Токарная обработка - Сменные пластины - Негативные

TNMG 160412 -SM

1.2

0.10~0.25

0.5~4.0

TNMG / TNMA (угол при вершине 60° Негативные)

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	1355	5.55	100	17.7	1000	9035	27	56.57	000	3020 Max	0.5		1000	3.5	YG:	5.5.5	100	213 Max	20. 1	214 Max	100	353	100	100 Max	250	310 Max
	1~5	Нелегированная сталь	-	+	220	480	170	450	170	410	180	380	150	350	120	200		(=)	-	-	4			*	7	-	~	*
P	6-9	Низколегиров. сталь		10	220	420	180	380	130	360	110	350	90	300	70	200				-	4		-			4	-	160
	10-11	Высоколегир, сталь		•			100	330	80	310	60	300	70	250		-	-	-	-				-			-		-
М	12~13	Феррит. и мартен. сталь	-	-	-	-95	*	+	-	. 7	-	4	120	230	+	н	130	230	110	180	80	150	-	7		+	-	-
IVI	14	Аустенит. нержав. сталь			·-				4	0		4	80	200	-	-	100	200	40	130	30	120		41		4	-	
~	15-16	Серый чугун	200	480	170	420	120	300	>-		-		-	100		-		-	-		-		-	-	-	-	-	-
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	-		-	9	+	•		2		-			4		-	*	-			-
N	21~30	Алюминий	2	+	12	4	4	14	2	1	-	21	3	4	12	4	4	2	12	-	2	16		8	350	1200	250	800
s	31-37	Суперсплавы и Титан		-		-	-						35	80	÷		30	90	20	40	20	40	40	85				-
н	38~41	Высокотв. материалы			-						-			-				-			-					-	-	

1228

1508

TNUX (угол при вершине 60° Негативные)

•: Номенклатурная	позиция	О:Позиция	по	доп.	заказу

				Артику	ул: 2200	K10	K20	K30	P15	P20	M20	P20	M15	M.30	S30	S10	N20	N20
T	NUX	Обозначение	RE	Fn (мм/об.)	Ap (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	5	TNUX 160404 L	0.4	0.10~0.30	0.5 ~ 4.0			0412		0413	1264	0043						
UX Левая		TNUX 160408 L	0.8	0.10~0.40	0.5 ~ 6.0			0414		0415	0675	0045	0731					
		TNUX 160404 R	0.4	0.10~0.30	0.5 ~ 4.0			0288		0289	0290	0044						
UX Правая		TNUX 160408 R	0.8	0.10~0.40	0.5 ~ 6.0			0291		0292	0293	0046						

	Скор	ость резания												Vo	; (M	/ми	H.)											
ISO	VDI	Подгруппа	0.00		170		100	300	0			100	1	3030 Max	1975		1	211 Max	100	213 Max		214 Max	500	401 Max	100	100 Max	1975	G10 Max
	1-5	Нелегированная сталь		*	220	480	170	450	170	410	180	380	150	350	120	200							+	*	+		×	
P	6~9	Низколегиров. сталь		*	220	420	180	380	130	360	110	350	90	300	70	200	ķ.		-	100	-				-	14		-
	10~11	Высоколегир, сталь		•	-		100	330	80	310	60	300	70	250	-	-					-				æ.			
М	12~13	Феррит. и мартен. сталь	-	-	137	-35		-	14.		-	9	120	230	-	-	130	230	110	180	80	150	-	+	140		*	÷
IVI	14	Аустенит. нержав. сталь		*					-			*	80	200			100	200	40	130	30	120	*		*	16	*	
v	15~16	Серый чугун	200	480	170	420	120	300	~	15	-	-	7	15	-	-	6.2		9			-	8	-	e i	1-	+	- 6
^	17~18	Высокопрочный чугун	150	450	120	410	120	280	μ.	.4	-	-	-	-	~		10		-	+	×.				(+)	+	+	
N	21~30	Алюминий	2	- 4		14	6		4	4	2	4	٠	1.0	8		4	*	9				16		350	1200	250	800
S	31~37	Суперсплавы и Титан		•	1.0					-			35	80			30	90	20	40	20	40	40	85				
H	38~41	Высокотв. материалы		-				-								-					-							

VNMG / VNMA (угол при вершине 35° Негативные)

Серия	L	IC	S
VN** 1604	15.8	9.525	4.76

●: Номенклатурная позиция ○: Позиция по доп. заказ:

							1	●: Ho	мен	клату	рная	пози	ция ():No	зиция	я по д	юп. за	аказ
				Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	VNMA VNMG	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
.MA		VNMA 160408	0.8	0.15 ~ 0.40	1.0~5.0	1573	0162	1275										
_	Чугун	VNMG 160404 - UF	0.4	0.05 ~ 0.25	05~25			0306		0307		0049						
-UF	Чистовая обработка	VNMG 160408 - UF	0.8	0.05 ~ 0.25	1.0~2.5			0309		0310	0311							
-UL		VNMG 160404 - UL VNMG 160408 - UL	0.4	0.10~0.30 0.10~0.30	0.5~3.0 1.0~3.0			0886	•		0723							
	Обработка вязких материалов на низких режимах						Į		0790		•							
		VNMG 160408 - UM	0.8	0.15 ~ 0.30	1.0~3.0		-	1359		1361	100							
-UM	Об-ка при умеренных, нестаб. условиях	VNMG 160412 - UM	1.2	0.15~0.30	1.5~3.0		1230	0736		0737	-							
	100	VNMG 160404 - UG	0.4	0.20~0.40	0.5~3.0	1648	1331	0993		0940	0994							
-UG	Обработка при	VNMG 160408 - UG	0.8	0.20~0.40	1.0~3.0	1000	0462	0312		0313	0314	0050						
	умеренных, стабильн. условиях	VNMG 160412 - UG	1.2	0.20~0.40	1.5~3.0	1659	1345	0931		0927	0917							
	100	VNMG 160404 - UC	0.4	0.20~0.40	0.5~3.5	1612	0885	0423		1276	1277							
-uc		VNMG 160408 - UC	0.8	0.20~0.40	1.0~3.5	0980	0094	0424		0425								
100	Черновая обработка чугуна, при умеренных	VNMG 160412 - UC	1.2	0.20~0.40	1.5~3.5	1587	1381	1392		1382	1384							
	условиях																	

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	100		1.00	25.7	1111	FREE	200		N.F.	300	Sept. 7	3030 Max	100		V	211 Max	12.00	213 Max	150.00	214 Max	1575	87.5	110	100 Max	- 1	G10 Max
	1~5	Нелегированная сталь			220	480	170	450	170	410	180	380	150	350	120	200		41			-	. 81	-		•	•		
P	6~9	Низколегиров. сталь		•	220	420	180	380	130	360	110	350	90	300	70	200	-	•		-	-	•		4	•			
	10~11	Высоколегир, сталь					100	330	80	310	60	300	70	250				•										
М	12~13	Феррит. и мартен. сталь	-		-	•	18	*					120	230		-	130	230	110	180	80	150			e.			13
IAI	14	Аустенит, нержав, сталь									-		80	200		+	100	200	40	130	30	120			•			
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	17	-	-	÷	(2)	-	-	-	9		-	÷	÷	-	5	-	j.	-	-
n.	17~18	Высокопрочный чугун	150	450	120	410	120	280			-				21		-	4						10		. • 0		
N	21~30	Алюминий			-		16	-	-		-		-				ő-				•		-		350	1200	250	800
S	31~37	Суперсплавы и Титан	-	-	-	•	æ	-	-	-	-	*	35	80	+		30	90	20	40	20	40	40	85		191		-
Н	38~41	Высокотв. материалы		16			10						-		2	4												

VNMG / VNMA (угол при вершине 35° Негативные)

	Серин		100	3
	VN** 1604	15.8	9.525	4.76
>%				

•: Номенклатурная позиция О: Позиция по доп. заказу

							,	●: H	мен	клату	рная	пози	ция ():Πo	зиция	я по д	оп. з	аказ
				Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	VNMG	Обозначение	RE	Fn (мм/об.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
-UR		VNMG 160412 - UR	1.2	0.30~0.45	1.5~4.0		1231			0431	0432	0051						
	Черновая обработка																	
MF	150	VNMG 160408 - MF	8.0	0.07 ~ 0.30	0.2~1.5						0830		0829	0947				
1411	Чистовая обработка нержавеющей стали																	
	63	VNMG 160404 - MM	0.4	0.20~0.35	0.5~3.5								0661	0662	1792			
MM	Обработка нержавеющей стали	VNMG 160408 - MM	8.0	0.20~0.35	1.0~3.5								0663	0664	1793			
	при умеренных условиях			IKK	111	F												
MR	10/	VNMG 160408 - MR	8.0	0.30~0.55	2.0~5.5						0832		1020	0831				
	Черновая обработка нержавеющей стали																	
	10/	VNMG 160408 - SR	8.0	0.10~0.40	0.5~4.0											1449		
-SR	Обработка жаропрочных сплавов при умеренных условиях																	

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	100		100	7.77	FORE	15.35	200	5.512.7	100	193	1000	3030 Max	100	801 Max	177	211 Max	100	213 Max	0.7	214 Max	100 E	37.3	lec.	100 Max	1200	G10 Max
	1~5	Нелегированная сталь		-18	220	480	170	450	170	410	180	380	150	350	120	200	1.	•			-					10.0		÷
P	6~9	Низколегиров. сталь	-		220	420	180	380	130	360	110	350	90	300	70	200								-		1	è	
	10~11	Высоколегир. сталь			1,50	- 51	100	330	80	310	60	300	70	250							(-c	-			9.	12		- 0
14	12~13	Феррит. и мартен. сталь		181		-31		*	19				120	230			130	230	110	180	80	150						
M	14	Аустенит, нержав, сталь											80	200			100	200	40	130	30	120				9		
v	15~16	Серый чугун	200	480	170	420	120	300	-	7-	-	-	10	P	-	÷	-	ā,	-	191	úŽ,	÷	÷	+	(+)	12.	9	÷
K	17~18	Высокопрочный чугун	150	450	120	410	120	280		4.5										141	-		120		4			
N	21~30	Алюминий					-	1.5	-				0-0			-					-			*	350	1200	250	800
S	31~37	Суперсплавы и Титан	4	-		-	-		÷,	14		- 3	35	80	4		30	90	20	40	20	40	40	85	-	10	÷	8
H	38~41	Высокотв. материалы		-	100			100		16	-		-	V.	-					100	1.			- 20	20	18	1.2	de

WNMG/WNMA (угол при верш/ 80° Трехгранные, Негативные)

Серия	L.	IC	S
WN** 0604	5.7	9.525	4.76
WN** 0804	7.8	12.700	4.76

•: Номенклатурная позиция 🔾 : Позиция по доп. заказу

				Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15	M30 520	M40 530	510	N20	N20
	WNMA WNMG	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		WNMA 080404	0.4	0.15 ~ 0.50	0.5 ~ 5.0	0903	0052	1262										
		WNMA 080408	0.8	0.15 ~ 0.50	1.0 ~ 5.0	0904	0053	0433										
MA	Чугун	WNMA 080412	1.2	0.15 ~ 0.50	1.5 ~ 5.0	0905	0054	0434										
_	A	WNMG 060404 - UF	0.4	0.05 ~ 0.20	0.5 ~ 2.0			0435		0436	0437	0058						
		WNMG 080404 - UF	0.4	0.05 ~ 0.25	0.5 ~ 2.0			0315		0316		0055						
-UF	Ungana afaafann	WNMG 080408 - UF	0.8	0.05~0.25	1.0~2.5			0321		0322	0323							
	Чистовая обработка	WNMG 080412 - UF	1.2	0.05~0.25	1.5~2.5			1424		1410	•							
		WNMG 060408 - UL	0.8	0.10~0.30	1.0~2.5		7	0439		0440	•	Т						
122		WNMG 080404 - UL	0.4	0.10~0.30	0.5~3.0		I	1431	1466	1434	•	П						
-UL	Обработка вязких материалов на низких режимах	WNMG 080408 - UL	0.8	0.10~0.30	1.0~3.0			0324		0325								
_	режимах	WNMG 060404 - UM	0.4	0.15 ~ 0.30	0.5~2.5		1259	0741	T	0785	0742							
		WNMG 060408 - UM	0.8	0.15~0.30	1.0 ~ 2.5		1260	0600		0601	1271							
		WNMG 080404 - UM	0.4	0.15~0.30	0.5 ~ 3.0		1313	0786		0787	0788							
-UM	Обработка при умеренных,	WNMG 080408 - UM	0.8	0.15 ~ 0.30	1.0 ~ 3.0		0470	0327	0761	0328	0329							
	нестабильных условиях	WNMG 080412 - UM	1.2	0.15~0.30	1.5~3.0			0649		0598								
		WNMG 080416 - UM	1.6	0.15~0.30	2.0~3.0					0584	•							

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	1250		1000		D. 18		100		000		7.5	3030 Max	699		XXX	211 Max		213 Max	500	214 Max	YG Min	25/5	1.4	100 Max	100	G10 Max
	1~5	Нелегированная сталь	-	+	220	480	170	450	170	410	180	380	150	350	120	200		(=)	+	-	=	÷	×	5	7	-	-	2
P	6-9	Низколегиров. сталь		*	220	420	180	380	130	360	110	350	90	300	70	200				-	2	1,0	-			*	-	10
	10-11	Высоколегир, сталь		•			100	330	80	310	60	300	70	250		8	-	-				æ.	-	÷		•		
M	12~13	Феррит. и мартен. сталь	+	+		- 95	*	+	3-	1/2	-	9	120	230	*	-	130	230	110	180	80	150	-	-		+		-
IVI	14	Аустенит. нержав. сталь			6-0				4			4	80	200	-		100	200	40	130	30	120		*		4	-	
ĸ	15-16	Серый чугун	200	480	170	420	120	300	-		-		-	T.		+	pēs.	-	-		-		-	-		-		
N.	17~18	Высокопрочный чугун	150	450	120	410	120	280	-	•	-	30		-		2	+	-		-	4	+	-	-		4	+	
N	21-30	Алюминий	14	A		4	4		2	16	-	21	3	-		4	-	2	2	-	2	76		*	350	1200	250	800
S	31-37	Суперсплавы и Титан		-	ı.	-	÷					,	35	80			30	90	20	40	20	40	40	85	-			
Н	38~41	Высокотв. материалы		-		-				-	-	-		-			ī	-		-	-		-	-	-	-		

WNMG/WNMA (угол при вершине 80° Трехгранные, Негативные)

Серия	L	IC	S
WN** 0604	5.7	9.525	4.76
WN** 0804	7.8	12.700	4.76

7GTURN

		L. L.	- 3	1-3				●:H	Hewo	клату	рная	пози	ция (): No	зиция	A UO	ОП. 3	аказ
				Артик	ул: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	\$10	N20	N20
	WNMG	Обозначение	RE	Fn (мм/об.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	A	WNMG 060408 - UG	0.8	0.20~0.40	1.0 ~ 3.0		0697	1047	1011	0438	0874	0059						
		WNMG 080404 - UG	0.4	0.20~0.40	0.5 ~ 3.0		1232	0318		0319	0320							
-UG	Обработка при	WNMG 080408 - UG	0.8	0.20~0.40	1.0 ~ 3.0	0908	0463	0147	0582	0148	0149	0056						
	умеренных, стабильных	WNMG 080412 - UG	1.2	0.20~0.40	1.5~3.0	0910	0466	0503	0648	0490	0941							
	условиях	WNMG 080416 - UG	1.6	0.20~0.40	2.0 ~ 4.0		1233	1056	0764	0583	1238							
	_	WNMG 060408 - UC	0.8	0.20~0.40	1.0~3.0		0095	0875		0876	0724							
		WNMG 080404 - UC	0.4	0.20~0.40	0.5 ~ 4.0	0906	0097	0133		0110	0134							
-UC	Черновая обработка	WNMG 080408 - UC	0.8	0.20~0.40	1.0~4.0	0907	0077	0135	0733	0111	0136						1	
	чугуна, при умеренных условиях	WNMG 080412 - UC	1.2	0.20~0.40	1.5~4.0	0909	0078	0137	0630	0112	0138							
	yoloomx	WNMG 080416 - UC	1.6	0.20~0.40	2.0 ~ 4.0	1187	1055	1235		1236	0743							
		WNMG 060412 - UR	1.2	0.30~0.50	1.5 ~ 4.0	1317	1066	1057	Н	1058	1060							
-UR		WNMG 080408 - UR	0.8	0.30~0.50	1.0 ~ 5.0		0464	0465		0471	0472							
-UK	Черновая обработка	WNMG 080412 - UR	1.2	0.30~0.50	1.5 ~ 5.0		0467	0442	0631	0443	0444	0057						
	isp.iossi, ospasonia	WNMG 080416 - UR	1.6	0.30~0.50	2.0 ~ 5.0		0468	0469	0889	0725	0714							

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	200		COL		505		1		100		1000	3030 Max	100	801 Max	YG: Min	73.5	5775	213 Max	10.5	214 Max	60	2	00.75	100 Max	1000	G10 Max
	1-5	Нелегированная сталь			220	480	170	450	170	410	180	380	150	350	120	200	+	+		+								
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200		4		1.0		4		*			-	
	10~11	Высоколегир, сталь		•	-		100	330	80	310	60	300	70	250							(*)		3	-	i.e	-	-	
M	12~13	Феррит. и мартен. сталь	-	-	-	¥	u	3	4	+	-	-	120	230	4	-	130	230	110	180	80	150	4	-	¥	¥	-	
IVI	14	Аустенит. нержав. сталь		*	*	4	+		1	Ä		3	80	200			100	200	40	130	30	120				4		
v	15~16	Серый чугун	200	480	170	420	120	300	-	-	-	-		•	-			-			-	-	-	71	-			
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	4	ч	9	141	-	4	4	-	70	-	-	8	8		*		-	-	14	
N	21~30	Алюминий	*	*		4	2		4	· À		*	4		4		4	4		14	6	6	8	*	350	1200	250	800
S	31~37	Суперсплавы и Титан			j.			-	10				35	80			30	90	20	40	20	40	40	85			-	
H	38~41	Высокотв. материалы								÷										10								

WNMG/WNMA (угол при верш. 80° Трехгранные, Негативные)

Серия	L	IC	S
WN** 0604	5.7	9.525	4.76
WN** 0804	7.8	12.700	4.76

•: Номенклатурная позиция О : Позиция по доп. заказ

		- 11-21	3					●: Ho	мен	слату	рная	пози	ция (): No	зици	A UO	фп. за	аказ
				Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	WNMG	Обозначение	RE	Fn (MM/06.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	A	WNMG 060404 - MF	0.4	0.07 ~ 0.30	0.2~1.5			O 0833			0996		1215	1217				
-MF		WNMG 060408 - MF	0.8	0.07 ~ 0.30	0.2~1.5								1216	1218				
-IAIL	Чистовая обработка	WNMG 080404 - MF	0.4	0.07 ~ 0.30	0.2~1.5						0834		0667	0668	0970			
	нержавеющей стали	WNMG 080408 - MF	0.8	0.07 ~ 0.30	0.2~1.5						1098		0617	0618				
		WNMG 080404 - MM	0.4	0.20~0.35	0.5~3.5	m							0571	0572	1			
		WNMG 080408 - MM	0.8	0.20~0.35	1.0~3.5						0491		0497	0498	0633			
-MM	Обработка	WNMG 080412 - MM	1.2	0.20~0.35	1.5~3.5								0612	0615				
п	нержавеющей стали ои умеренных условия	ix			5													
	1	WNMG 080408 - MG	0.8	0.20~0.40	1.0~4.0		7						1496	1497	1160	1498		
-MG	701	WNMG 080412 - MG	1,2	0.20~0.40	1.5~4.0								1499	1500	1161	1501		
	Обработка при умеренных, стабильных условиях																	
	/	WNMG 060412 - MR	1,2	0.30~0.55	1.2~4.0								0616					
	(0)	WNMG 080408 - MR	0.8	0.30 ~ 0.55	2.0~5.5						1099		0619	0620	0835			
-MR	Черновая обработка	WNMG 080412 - MR	1.2	0.30~0.55	2.0~5.5						0837	-	0665	0666	0836			
-	нержавеющей стали	WNMG 080408 - KR	0.8	0.30 ~ 0.60	1.0~5.0	0932	0720	1038										
-KR	20	WNMG 080412 - KR	1.2	0,30~0.60	1.5~5.0		0522	•										
AIN	Черновая обработка чугуна	<u></u>																

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	100	1010 Max	100	77.		FIE F	100	7.7.	The same	100	5		150	801 Max	1	211 Max	200	213 Max	50.0	214 Max	100	401 Max	110	100 Max	9.0	G10 Max
	1~5	Нелегированная сталь		-	220	480	170	450	170	410	180	380	150	350	120	200		•				16				•		
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200	-	-5	-	-		•			•	•		
	10~11	Высоколегир, сталь	-				100	330	80	310	60	300	70	250				•				•				•		•
М	12~13	Феррит. и мартен. сталь		- 1	-	- •	78	*					120	230		-	130	230	110	180	80	150			e			131
IVI	14	Аустенит, нержав, сталь						-	÷.		-	•	80	200			100	200	40	130	30	120	-					
к	15~16	Серый чугун	200	480	170	420	120	300	-	7	0	-	÷	(2)	-	-	-	Ģ	+	-	÷	÷	-	5	÷	j.	-	7
N.	17~18	Высокопрочный чугун	150	450	120	410	120	280	-		-				2		-	4.				4	-	(2)			-	
N	21~30	Алюминий			-		16	-	-		-		-	i e			ō-	ı.			•				350	1200	250	800
S	31~37	Суперсплавы и Титан	-	- 9	-	-	-	-	-	3	-		35	80	+	+	30	90	20	40	20	40	40	85		191	-	-
H	38~41	Высокотв. материалы		4			16			4			-	•	-	4		-										

WNMG/WNMA (угол при верш. 80° Трехгранные, Негативные)

Серия	L	IC	S
WN** 0604	5.7	9.525	4.76
WN** 0804	7.8	12.700	4.76

7/GTURN

		/ -L-	S	-			9	●:H	оменн	слату	рная	пози	ция 🤇):По	зиция	H HO I	оп, з	аказ
				Артику	/л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	WNGG WNMG	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
-SF	6	WNGG 080408 - SF	0.8	0.10~0.25	0.5~3.0								1199 1374			1308		
	Чистовая обработка жаропрочных сплавов	WNMG 080408 - SM	0.8	0.10~0.25	0.5~4.0								1199	1206		1311		
-SM	6	WNMG 080412 - SM	1.2	0.10 ~ 0.25	0.5 ~ 4.0								•	1416		1312		
	жаропрочных сплавов ри умеренных условия																	
		WNMG 060412 - SR	1.2	0.10~0.40	0.5~3.0											1439		
cr		WNMG 080408 - SR	0.8	0.10 ~ 0.40	0.5 ~ 4.0	4	U									1310		
-SR	Черновая обработка жаропрочных сплавов	WNMG 080412 - SR	1.2	0.10 ~ 0.40	0.5~4.0											1309		

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	0.60	1010 Max	1000	200	50.5	333	55			4.75	7	- 7/2 -	575	663	YG: Min		880	213 Max	100	214 Max	100	35.3	100	100 Max	1000	G10 Max
	1-5	Нелегированная сталь	+	¥	220	480	170	450	170	410	180	380	150	350	120	200								*	+		*	
P	6~9	Низколегиров. сталь		*	220	420	180	380	130	360	110	350	90	300	70	200	ı.			14	-				-	14		-
	10~11	Высоколегир, сталь		•	-	-	100	330	80	310	60	300	70	250		-					-					-	+	+
М	12~13	Феррит. и мартен. сталь	-	+	(3)	3	-	-	14	. 7		9	120	230	3	-	130	230	110	180	80	150		+	100	. +	-	÷
IVI	14	Аустенит. нержав. сталь		*			*		*		-	*	80	200	*		100	200	40	130	30	120	*		*	14		*
к	15~16	Серый чугун	200	480	170	420	120	300	*			-	-	19		-	(-7				0-0	-	9:	-	-	-		
N.	17~18	Высокопрочный чугун	150	450	120	410	120	280	4	-		-	-		*		1			4	200				·	+	+	*
N	21~30	Алюминий		-		4	5		4			-	â	-	8		4	*	9				1		350	1200	250	800
S	31~37	Суперсплавы и Титан	-		,	-	-	ú.			÷		35	80			30	90	20	40	20	40	40	85				
H	38~41	Высокотв. материалы						-							1	-					-					-		191

7/GTURN

Токарная обработка - Сменные пластины - Позитивные

ССМТ / СССТ (угол при вершине 80° Позитивные)

L	IC	S
6.2	6.350	2.38
9.2	9.525	3.97
12.4	12.700	4.76
	9.2	6.2 6.350 9.2 9.525

		7 -L-	-	S				•: H	мен	слату	рная	пози	ция С):По	зиция	я по д	оп. з	аказу
				Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 510	M30 520	M40 530	510	N20	N20
	CCGT	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		CCGT 060202 - AL	0.2	0.02 ~ 0.15	0.1~2.0													1398
	6	CCGT 060204 - AL	0.4	0.02~0.15	0.5~2.0													1320
		CCGT 09T302 - AL	0.2	0.02 ~ 0.08	0.5 ~ 1.0												0340	
	and	CCGT 09T304 - AL	0.4	0.05~0.25	0.5~2.0												0330	•
-AL	A	CCGT 09T308 - AL	0.8	0.10~0.35	1.0~3.0													0082
	Алюминий	CCGT 120402 - AL	0.2	0.04~0.15	0.1 ~ 1.0												•	0473
		CCGT 120404 - AL	0.4	0.04 ~ 0.20	0.3~1.5													0475
		CCGT 120408 - AL	0.8	0.04 ~ 0.30	0.6~2.5												•	0477
		CCMT 060204 - UF	0.4	0.05 ~ 0.20	0.5~2.0			0163	0866	0164	0165						0.110	V 117
-		CCMT 09T304 - UF	0.4	0.05 ~ 0.20	0.5~2.0			0169	0000		0171							
-UF	Чистовая обработка	CCMT 09T308 - UF	8.0	0.05 ~ 0.25	1.0~2.0			0964			0953							
	1	CCMT 060204 - UG	0.4	0.10~0.25	0.5~2.0	1377		0166		0167	0168	0006			1900			
		CCMT 060208 - UG	0.8	0.10~0.25	0.8~2.0	1825		0479			0684				1901			
		CCMT 09T304 - UG	0.4	0.15~0.30	0.5~2.5	1844		0172			0174				1501			
-UG		CCMT 09T308 - UG	0.8	0.15~0.30	0.8~2.5		0445	0150		•	0152	•						
	Общего назначения	CCMT 120404 - UG	0.4	0.15~0.35	0.5 ~ 3.0	1845	J-13	0130			0132	5000						
		CCMT 120408 - UG	0.8	0.15~0.35	0,8~3,0	1462			0867		0177	0005						
		CCMT 120412 - UG	1.2	0.15~0.35	1.2~3.0	1846		0483	000/		1135	UVI						

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	1000		1.55	363.	E-473	1997	100		100	3020 Max	50.7	- A-	100	801 Max	V- 2	211 Max	17.0	213 Max	57.5	214 Max	1500	401 Max		100 Max		G10 Max
	1~5	Нелегированная сталь			220	480	170	450	170	410	180	380	150	350	120	200		÷			•						•	
P	6~9	Низколегиров. сталь			220	420	180	380	130	360	110	350	90	300	70	200	-	- 45		1		1.			•		ě	15
	10~11	Высоколегир, сталь	5		-0	•	100	330	80	310	60	300	70	250		3	c.	•			-							
М	12~13	Феррит. и мартен. сталь		-91	-	- 31	12	+		•	+		120	230		-	130	230	110	180	80	150	-		9		-	131
IVI	14	Аустенит, нержав, сталь							÷				80	200		•	100	200	40	130	30	120						
	15~16	Серый чугун	200	480	170	420	120	300	-	÷	0	-	÷	(4)	-	-	ů.	Ģ	÷	-	÷	÷	-	ē	+	à,	-	+
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	4		-		¥		20				16.					180				
N	21~30	Алюминий			-		16	-	-		-						ő.	14			•				350	1200	250	800
S	31~37	Суперсплавы и Титан	2	- 9	Ç.	-		-	-	-	-	4	35	80	+	-	30	90	20	40	20	40	40	85		-	-	9
H	38~41	Высокотв. материалы		46			16	-			-		-			4	(·											

ССМТ / СССТ (угол при вершине 80° Позитивные)

П	Серия	L	IC	5
	CC** 0602	6.2	6.350	2.38
	CC** 09T3	9.2	9.525	3.97
	CC** 1204	12.4	12.700	4.76

. HOMORKUSZADINO USARING U. DOSMING DO DOD	Sakasy

				Артикул: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 S10	M30 520	M40 530	510	N20	N20
	CCGT	Обозначение	RE	Fn Ap (MM/06.) (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
		CCMT09T302-MF	0.2	0.06 ~0.1 0.2 ~ 2.0								2002	2003	2004	2028		
-MF	0	CCMT09T304-MF	0.4	0.06 ~0.2 0.2 ~ 2.0								1589	1590	1947	2029		
	истовая обработка ержавеющей стали	ССМТ09Т308-МF	8.0	0.06 ~0.2 0.2 ~ 2.0								1957	1958	1959	1943		
		ССМТ09Т304-ММ	0.4	0.1 ~0.2 0.6 ~ 3.0								1591	1592	1946	2039		
-MM		ССМТ09Т308-ММ	0.8	0.1 ~0.3 0.6 ~ 3.0								1887	1888	•	1944		
	гка нержавеющей ст меренных условиях																
-		CCGT060201-SF	0.1	0.02 ~0.15 0.1 ~ 1.5											2065		
		CCGT060202-SF	0.2	0.03 ~0.2 0.1 ~ 1.5											2066		
-SF		CCGT060204-SF	0.4	0.03 ~0.25 0.1 ~ 1.5											2067		
	Чистовая об-ка	CCGT09T301-SF	0.1	0.02 ~0.15 0.1 ~ 1.5											2071		
	жаропрочных	CCGT 09T302-SF	0.2	0.02 ~0.15 0.1 ~ 1.5											2072		
	суперсплавов	CCGT 09T304-SF	0.4	0.04 ~0.25 0.1 ~ 1.5											2073		
		CCGT 09T308-SF	0.8	0.04 ~0.25 0.2 ~ 1.5											2074		

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	100	1010 Max	7.7	1570	F207	3.35	100		100		100		10.5	801 Max	12.7	211 Max	100	213 Max	7.5	214 Max	GO E	22.2	100	100 Max	100	Max
	1~5	Нелегированная сталь		15	220	480	170	450	170	410	180	380	150	350	120	200	1.	•						-	•	10	•	•
P	6~9	Низколегиров, сталь	-	14	220	420	180	380	130	360	110	350	90	300	70	200			-		-						•	ě
	10~11	Высоколегир. сталь		-	1.40	-51	100	330	80	310	60	300	70	250					5		Ç.	- 2			9.	-		
M	12~13	Феррит. и мартен. сталь		151	-	- 0.0		8			12		120	230			130	230	110	180	80	150			1			
IAI	14	Аустенит, нержав, сталь				i.e.							80	200			100	200	40	130	30	120			•			
ĸ	15~16	Серый чугун	200	480	170	420	120	300	-	-	-	7	1	÷	8	-	÷	ē.	-	17	ú,	÷		+	÷	13	,	÷
^	17~18	Высокопрочный чугун	150	450	120	410	120	280		1.5					6.				14	360			10		4			
N	21~30	Алюминий			-		-	10	-						-						-			*1	350	1200	250	800
S	31~37	Суперсплавы и Титан	4	19		-	-	-	-,-	(-	-3	3	35	80	4		30	90	20	40	20	40	40	85	3.	(+)	3	3
H	38~41	Высокотв. материалы	2		-2		16	14		16	12.	6		To.	-	- 2			4	100	-		-	-	40	16	-	de

DCMT / DCGT (угол при вершине 55° Позитивные)

•: Номенклатурная позиция О: Позиция по доп. заказу Артикул: 2200... P20 P20 YG3030 YG3015 YG3020 YG1010 YG1001 YG3010 YG801 YG211 YG213 YG214 YG401 YG100 YG10 Fn Ap RE Обозначение (MM/of.) (MM) . . DCMT070204-MF 0.4 0.05 ~0.2 $0.2 \sim 2.0$ 1978 1979 1980 2030 -MF DCMT11T302-MF 0.2 0.05 ~0.1 $0.3 \sim 2.0$ 2031 2005 2006 2007 DCMT11T304-MF 0.4 0.07 ~0.2 $0.3 \sim 2.0$ Чистовая обработка 1885 1886 1927 2032 нержавеющей стали DCMT11T308-MF 0.8 0.07 ~0.2 0.3~2.0 1963 1964 1965 2033 . . . DCMT070204-MM $0.5 \sim 3.0$ 0.4 0.07 ~0.3 -MM 2000 2001 1999 2040 DCMT11T304-MM 0.4 0.1 ~0.3 0.5 ~ 3.0 2041 1990 1991 1992 Обработка нержавеющей стали DCMT11T308-MM 0.8 0.1 ~0.3 0.5 ~ 3.0 при умеренных условиях 1984 1985 1986 DCGT070201-SF 0.1 0.02 ~ 0.15 0.1 ~ 1.5 2068 DCGT070202-SF 0.2 0.03 ~0.2 0.1 ~ 1.5 2069 0.4 0.03 ~0.25 0.1 ~ 1.5 DCGT070204-SF 2070 DCGT11T301-SF 0.1 0.02 ~0.1 0.1 ~ 1.5 2075 Чистовая об-ка . DCGT11T302-SF 0.2 0.02 ~0.15 0.1 ~ 1.5 жаропрочных 1474 суперсплавов 0.4 0.04 ~ 0.2 0.1 ~ 1.5 DCGT11T304-SF 1463 DCGT11T308-SF 0.8 0.04 ~ 0.2 0.1 ~ 1.5 2076

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	YG1	100	V-5.1	-	EVALUE	TVE.	() = ·	3135	P. 11		-	3030 Max	100	963	1000	211 Max	100	213 Max	V	214 Max	100 E	401 Max	1.7	100 Max	1.70	G10 Max
	1~5	Нелегированная сталь			220	480	170	450	170	410	180	380	150	350	120	200					-	ī.•			12	•	-	
P	6~9	Низколегиров, сталь		٠	220	420	180	380	130	360	110	350	90	300	70	200			-	÷						(.	-	
	10~11	Высоколегир. сталь				, 5	100	330	80	310	60	300	70	250							-				50		-	
	12~13	Феррит. и мартен. сталь		le I	reo.		10						120	230	100		130	230	110	180	80	150			Æ.	-JF	-	14
M	14	Аустенит. нержав, сталь			ce o			-		•			80	200	٠		100	200	40	130	30	120				•		
v	15~16	Серый чугун	200	480	170	420	120	300	6		-	+	(2)	Ş	Ģ.	-		50	1.5	+	9	.9	÷	-	+	*	-	+
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	4	0.0		(4)		140	54.						(e.	-	(4)		140			
N	21~30	Алюминий			0	10	*		1.							-	5				•	•			350	1200	250	800
S	31~37	Суперсплавы и Титан	.0	0	C			-	i,	e.	-	-	35	80	0		30	90	20	40	20	40	40	85	190	1.		-
H	38~41	Высокотв. материалы		-	(-)	100			h-25		21	1.4	(-)			-	1.		-			1.4			S-,	4.		1,21

DCMT / DCGT (угол при вершине 55°

Серия	L	IC	S
DC** 0702	7.5	6.350	2.38
DC** 11T3	11.2	9.525	3.97

7GTURN

								●: Ho	мен	клату	рная	пози	ция ():По	зиция	я по д	доп. з	аказу
				Артику	n: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 S10	M30 S20	M40 530	S10	N20	N20
	DCGT DCMT	Обозначение	RE	Fn (мм/об.)	Ap (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	6	DCGT 070204 - AL	0.4	0.02 ~ 0.15	0.1 ~ 2.0													1400
-AL	10/	DCGT 11T302 - AL	0.2	0.02 ~ 0.08	0.5 ~ 1.0												0342	0341
-AL	Алюминий	DCGT 11T304 - AL	0.4	0.05 ~ 0.25	0.5 ~ 2.0												0332	0083
	Аломиния	DCGT 11T308 - AL	0.8	0.10~0.30	1.0~2.5												0333	0084
		DCMT 070204 - UF	0.4	0.05~0.20	0.5 ~ 2.0			0207		0208	0209							
-UF		DCMT 11T304 - UF	0.4	0.05 ~ 0.25	0.5 ~ 2.0			0213		0214	0215							
-01-	Чистовая обработка	DCMT 11T308 - UF	0.8	0.05 ~ 0.25	1.0~2.0			0219		0220	0221							
		DCMT 070204 - UG	0.4	0.10~0.25	0.5~2.0			0210		0211	0212	0013						
-UG	ACT	DCMT 070208 - UG	0.8	0.10~0.25	0.8 ~ 2.0		5	0484		0717	1136							
-00	Общего назначения	DCMT 11T304 - UG	0.4	0.09 ~ 0.23	0.2 ~ 2.5		0677	0216		0217	0218	0014						
	Har o ciasoria idilimi	DCMT 11T308 - UG	0.8	0.18 ~ 0.50	0.5 ~ 3.2		0678	0222		0223	0224	0015						

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	6.00	1010 Max	TO		000		100				1.77		675		YG: Min		120	213 Max	0.00	214 Max	10.0	17.3		100 Max	127	G10 Max
	1-5	Нелегированная сталь	+	¥	220	480	170	450	170	410	180	380	150	350	120	200							+		+		+	
P	6~9	Низколегиров. сталь		*	220	420	180	380	130	360	110	350	90	300	70	200	ı.			14	-							
	10~11	Высоколегир. сталь		•	-		100	330	80	310	60	300	70	250		-					-	-		-	æ	-	+	+
М	12~13	Феррит. и мартен. сталь	-	-	(e)	74.	*	-	4	. 7		4	120	230	3	~	130	230	110	180	80	150	+	-	100	-	:=	¥
IVI	14	Аустенит. нержав. сталь		*			*		3.		+	*	80	200	*1		100	200	40	130	30	120	*	-	*	14.	-	
v	15~16	Серый чугун	200	480	170	420	120	300	æ		-	-	-	199		-	6-7				(-)	+	9.	-	-	-		
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	10			(e)	-	-	×		(+)		-	4	-		4			+	+	
N	21~30	Алюминий	2	- 4		4	5		4	4	4		â	10	8		4	4	2	*		-	1		350	1200	250	800
S	31~37	Суперсплавы и Титан	-	•	į.								35	80			30	90	20	40	20	40	40	85		14		
H	38~41	Высокотв. материалы							-						1	-					-		+					

RCMT (Круглые, Позитивные)

INSD	S
6	2.38
8	3.18
10	3.97
12	4.76
	6 8 10

 Номенклатурная позиция О: Позиция по доп. заказ 	•: Номенклат	урная позици	я О:Поз	оп виши	лоп, зака
---	--------------	--------------	---------	---------	-----------

			Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20			M40 530	S10	N20	N20
RCMT	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	RCMT 0602M0	3.0	0.13 ~ 0.40	0.5~2.0		0374	0375		0376	1151	0023						
	RCMT 0803M0	4.0	0.05~0.30	0.5 ~ 1.5		0377	0378		0379	100	0024						
Общего назначения	RCMT 10T3M0	5.0	0.10~0.35	0.5 ~ 2.5		0380	0381		0382		0021						
Оощего назначения	RCMT 1204M0	6.0	0.15 ~ 0.45	0.5 ~ 3.0		0383	0384		0385	1170	0022						

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	13.55		Y 20		0.74		17.7		000		200	3030 Max	DV-S	801 Max	200	211 Max	100	213 Max	20. Y	214 Max	YG Min	3515	1.4	100 Max	19000	G10 Max
	1~5	Нелегированная сталь	-	÷	220	480	170	450	170	410	180	380	150	350	120	200	1.	-51	-		-	*	~	8	145	-	-	
P	6~9	Низколегиров, сталь		*	220	420	180	380	130	360	110	350	90	300	70	200		41		-	4					-	-	8
	10-11	Высоколегир. сталь		*:		•	100	330	80	310	60	300	70	250		- 8.	-	-					-	÷		-		
М	12~13	Феррит. и мартен. сталь	-	+		- 95	*	+	7-	1/-	-	4	120	230	1	¥	130	230	110	180	80	150	-	3		-	-	+
IVI	14	Аустенит. нержав. сталь			r•n				4	1,0		4	80	200	ū.	*	100	200	40	130	30	120		*		-	-	
ĸ	15-16	Серый чугун	200	480	170	420	120	300	>-		-		-	T.		-		-	-		-	- 20	-	-	-	-	-	-
N.	17~18	Высокопрочный чугун	150	450	120	410	120	280	-		-	- 90	+	-		4		u,	-	-	4	+	-	*	-	4	-	-
N	21~30	Алюминий	-	4	-	4	44		2		-	21	2	-	1	4	4	-	12		2	6	-	8	350	1200	250	800
S	31-37	Суперсплавы и Титан		-	ı.	-	-					,	35	80			30	90	20	40	20	40	40	85	-		-	-
H	38~41	Высокотв. материалы				-				-	-			-				-	-	-	-	-		-	-	-	-	

SCMT/SCGT (Квадратные, Позитивные)

Серия	IC	S
SC** 09T3	9.525	3.97
SC** 1204	12,700	4.76

7/GTURN

		4 4 4		1				•:H	омен	клату	рная	пози	ция ():По	зици	no 1	оп. з	аказ
				Артику	л: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 \$10	M30 520	M40 530	510	N20	N20
	SCGT SCMT	Обозначение	RE	Fn (мм/об.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	~	SCGT 09T304 - AL	0.4	0.04 ~ 0.40	0.1~5.0													151
-AL	Алюминий	SCGT 09T308 - AL	0.8	0.03 ~ 0.40	0.1 ~ 5.0													151
	POTOMITITAL	SCMT 09T304 - UF	0.4	0.05 ~ 0.25	0.5 ~ 2.0			0386		0387	0783							
-UF		SCMT 09T308 - UF	8.0	0.05 ~ 0.25	1.0 ~ 2.0			1021		1022	0997							
	Чистовая обработка																	
		SCMT09T304 - UG	0.4	0.15~0.30	0.5~2.5	7	0455	0482		0916	1171	0025						
		SCMT 09T308 - UG	0.8	0.15~0.30	0.8~2.5		0456	0159		0160	0161	0026						
-UG	Общего назначения	SCMT 120408 - UG	0.8	0.15~0.35	0.8 ~ 3.0		0674	0255		0256	0257							
8484	O	SCMT120408-MM	0.8	0.15 ~0.30	0.8 ~ 3.5								1973	1974	1975	1976		
	Обработка нержавеющей стали																	

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	P 750		1		000			3015 Max	100		V		2/5		100	211 Max	620	213 Max		214 Max	6/5/	77.3	100	100 Max	1,55,50	G10 Max
	1-5	Нелегированная сталь	+	¥	220	480	170	450	170	410	180	380	150	350	120	200									+		+	
P	6~9	Низколегиров. сталь		*	220	420	180	380	130	360	110	350	90	300	70	200	ų.		3				ė					-
	10~11	Высоколегир, сталь		•		-	100	330	80	310	60	300	70	250							-						+	
М	12~13	Феррит. и мартен. сталь	-	¥	0.00	150	7	-	14.		-	4	120	230	+	-	130	230	110	180	80	150	*	-	140		(*)	¥
IVI	14	Аустенит. нержав. сталь		*					4	Ä			80	200	4		100	200	40	130	30	120	*		*	14	4	
к	15~16	Серый чугун	200	480	170	420	120	300	-		-	-	-	19	-		5-7				0-0		9:	-	-	-		
Λ.	17~18	Высокопрочный чугун	150	450	120	410	120	280	~	- 4	-	191			*		1		-	4	200				(+)	+	+	*
N	21~30	Алюминий	2	-		4	6		4	Á	2	4	â		8			4	4	-			1		350	1200	250	800
S	31~37	Суперсплавы и Титан		•	į.	-						•	35	80			30	90	20	40	20	40	40	85		-		
H	38~41	Высокотв. материалы						-							1												+	

при умеренных условиях

TCMT / TCGT (Треугольные, Позитивные)

Ī	Серия	L.	IC	S
	TC** 1102	10.3	6.350	2.38
	TC** 16T3	15.6	9.525	3.97

•: Номенклатурная позиция 🔾 : Позиция по доп. заказу

P05 P10 P35 P20 P30 P30 M15 M30 M40 C10 H20 M2

				Артику	л: 2200	K10	K20	K30	P15	P20	M20	P20	510	520	530	S10	N20	N20
	TCGT TCMT	Обозначение	RE	Fn (мм/об.)	Ap (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	Α.	TCGT 110204 - AL	0.4	0.03~0.30	0.1 ~ 4.0													1333
AL	(0)	TCGT 16T302 - AL	0.2	0.02~0.05	0.5 ~ 1.0												0344	0343
-AL	Алюминий	TCGT 16T304 - AL	0.4	0.05~0.25	0.5 ~ 2.0				H								0334	0085
	Изиминии	TCGT 16T308 - AL	0.8	0.10~0.35	1.0~3.0												0335	0086
	A	TCMT 110204 - UF	0.4	0.05~0.20	0.5~2.0			0395		0396	1196		П					
		TCMT 16T304 - UF	0.4	0.09~0.20	0.2~2.5			0397		0398	1046	0033						
-UF	Чистовая обработка	TCMT 16T308 - UF	0.8	0.05~0.25	0.8~2.0			0624		0625	1045							
	чистовал сорасотка				5													
	A	TCMT 110204 -UG	0.4	0.07 ~ 0.20	0.2~1.8		0728	0264		0265	0266	0032						
		TCMT 110208 - UG	0.8	0.10~0.25	0.8~2.0			0485		0715	1204							
-UG	Of word was a supplier	TCMT 16T304 - UG	0.4	0.15~0.30	0.5 ~ 2.5		0679	0267		0268	0269							
	Общего назначения	TCMT 16T308 - UG	0.8	0.15~0.30	0.8~2.5		0457	0156		•	0158	0034						
		TCMT16T304-MF	0.4	0.07 ~0.3	0.5 ~ 2.5								1981	1982	1983	2034		
-MF	A	TCMT16T308-MF	0.8	0.07 ~0.3	1.0 ~ 2.5								1966	1967	1968	2026		
	Чистовая обработка нержавеющей стали								L									
	Δ	TCMT16T304-MM	0.4	0.15 ~0.3	0.8 ~ 2.5								1993	1994	• 1995	2043		
-MN	A	TCMT16T308-MM	0.8	0.15 ~0.3	1.0 ~ 2.5								1952	1953	1954	1955		

Обработка нержавеющей стали при умеренных условиях

	Скор	ость резания												Vo	(M	/ми	н.)											
ISO	VDI	Подгруппа	1355		Y. St.		0.00		17.7		0000		0.5	3030 Max	DV S	801 Max	200	211 Max	1000	213 Max	200 Y	214 Max	YG Min	35151	1400	100 Max	100	G10 Max
	1~5	Нелегированная сталь	-	7	220	480	170	450	170	410	180	380	150	350	120	200		-(5)	+	-	-			*	7	+	-	
P	6-9	Низколегиров. сталь		10	220	420	180	380	130	360	110	350	90	300	70	200		41	10.	-	4		-		-	4	-	10
	10-11	Высоколегир. сталь	-				100	330	80	310	60	300	70	250	÷	8.	-	-				•	-	*		•		1.8
м	12~13	Феррит. и мартен. сталь	-	4	T	-95	*	-		10	-	9	120	230	+	e	130	230	110	180	80	150	-	7		+	-	-
IVI	14	Аустенит. нержав. сталь	-	4	č•0	-			4			4	80	200			100	200	40	130	30	120		+		-		
ĸ	15-16	Серый чугун	200	480	170	420	120	300	-		-		-	De o		-	p.e.or	-	-		-		-	-		-		-
ħ.	17~18	Высокопрочный чугун	150	450	120	410	120	280			-	30	÷	-		-	-	υ,	*	-	4	-	-	-	-	-		
N	21-30	Алюминий	14	4	-	4	4		2	13	-	-	2	4	*	4	-	2	2	9.	2	14		2	350	1200	250	800
S	31-37	Суперсплавы и Титан	.01	-	i.	-	-		i.		-		35	80	÷		30	90	20	40	20	40	40	85			-	-
H	38~41	Высокотв. материалы	-	10		-	i.e.				-			-			-	-		4					-	-	-	

VBMT (угол при вершине 35° Позитивные)

Серия	L	IC	S
VB** 1604	15.8	9.525	4.76

•: Номенклатурная позиция •: Позиция по доп. заказу

7/GTURN

			Артику	n: 2200	K10	P05 K20	P10 K30	P15	P20	P30 M20	P20	M15 S10	M30 S20	M40 530	510	N20	N20
VBMT	Обозначение	RE	Fn (мм/об.)	Ар (мм)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	VBMT 160404 - UF	0.4	0.05~0.25	0.5 ~ 2.0		ļ.	0294		0295	0296							
-UF	VBMT 160408 - UF	0.8	0.05 ~ 0.25	0.8 ~ 2.0			0300		0301	0302							
Чистовая обрабо	отка																
	VBMT 160404 - UG	0.4	0.15~0.30	0.5 ~ 2.5		0682	0297		0298	0299	0047						
-ug	VBMT 160408 - UG	0.8	0.15 ~ 0.30	0.8 ~ 2.5		0681	0303		0304	0305	0048						
Общего назначе	ния				H					H							
	VBMT160402-MF	0.2	0.05 ~0.1	0.5 ~ 2.5								2008	2009	2010	2036		
-MF	VBMT160404-MF	0.4	0.05 ~0.2	0.5 ~ 2.5		L						1960	1961	1962	2037		
Чистовая обработ нержавеющей ста		0.8	0.05 ~0.2	0.5 ~ 2.5								2011	2012	2013	2038		
-MM	VBMT160404-MM	0.4	0.15 ~0.3	0.5 ~ 2.5									1997	1998	2044		
Обработка нержавеющей стали при умеренных услови		0.4	0.15 ~0.3	0.5 ~ 2.5								1987	1988	1989	2045		

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	200		17.77		0/-		1				CYN	3030 Max	277		YG Min		869	213 Max	500	214 Max	YG Min	30.3	10.	100 Max	1975	G10 Max
	1-5	Нелегированная сталь	+	¥	220	480	170	450	170	410	180	380	150	350	120	200							+	*	+		*	
P	6~9	Низколегиров. сталь		*	220	420	180	380	130	360	110	350	90	300	70	200	Œ.	*		14	-				-			3
	10~11	Высоколегир, сталь		5			100	330	80	310	60	300	70	250							-					-	+	+
M	12~13	Феррит, и мартен, сталь	-	3	(E)	35	+	-	4	4	-	4	120	230	21	-	130	230	110	180	80	150			100	4	130	4
IVI	14	Аустенит. нержав. сталь		*			*		4		+	*	80	200	*		100	200	40	130	30	120			*	14		
v	15~16	Серый чугун	200	480	170	420	120	300				-	-	19-1		-	6-1				0-		9.	-	-	1-		
K	17~18	Высокопрочный чугун	150	450	120	410	120	280	7	4	-	191	-		*		10		-		-				1	-	+	
N	21~30	Алюминий	*	- 4			6								8				1	*		6	12		350	1200	250	800
S	31~37	Суперсплавы и Титан			į.	-		ú.				1.	35	80		-	30	90	20	40	20	40	40	85		12.		
H	38~41	Высокотв. материалы	-					-	,		-				*	-							+			-		

VCMT / VCGT (угол при вершине 35° Позитивные)

Серия	L	IC	S
VC** 1604	15.8	9.525	4.76

•: Номенклатурная позиция •: Позиция по доп. заказу

															THO E	JOIN S	unas
			Артику	л: 2200	K10	K20	K30	P15	P20	M20	P20	M15	M30	M40	510	MZÖ	N20
VCGT VCMT	Обозначение	RE	Fn (MM/06.)	Ap (MM)	YG1010	YG1001	YG3010	YG3015	YG3020	YG3030	YG801	YG211	YG213	YG214	YG401	YG100	YG10
	VCGT 160402 - AL	0.2	0.02 ~ 0.05	0.5 ~ 1.0												0418	0417
0/	VCGT 160404 - AL	0.4	0.05~0.25	0.5~2.0												0336	0087
Алюминий	VCGT 160408 - AL	0.8	0.10~0.35	1.0~3.0												0420	0419
	VCMT 160404 - UF	0.4	0.05 ~ 0.25	0.5~2.0	i		0716		0421	0955			_				
Чистовая обработка	VCMT 160408 - UF	0.8	0.05 ~ 0.25	1.0~2.0			0557		0558								
	VCMT 160404 - UG	0.4	0.10 ~ 0.20	0.3~2.5							0060						
	VCMT 160408 - UG	0.8	0.18 ~ 0.35	0.5 ~ 3.5			0946		0422	0956	0061						
Общего назначения				<u>nu</u>													
0	VCMT110304-MF	0.4	0.05 ~0.1	0.2 ~ 2.0								2014	2015	2016	2035		
600	VCGT110301-SF	0.1	0.05 ~0.1	0.2 ~ 2.0											2077		
10	VCGT110302-SF	0.2	0.05 ~0.1	0.2 ~ 2.0											1481		
The second secon	VCGT110304-SF	0.4	0.05 ~0.2	0.2 ~ 2.0											2078		
суперсплавов	VCGT110308-SF	0.8	0.05 ~0.2	0.2 ~ 2.0											2079		
	Алюминий Чистовая обработка Общего назначения истовая обработка истовая обработка истовая обработка жаропрочных	Обозначение VCGT 160402 - AL VCGT 160404 - AL VCGT 160408 - AL VCMT 160408 - AL VCMT 160408 - UF VCMT 160408 - UF VCMT 160408 - UG VCMT 160408 - UG	VCMT 160402 - AL 0.2 VCGT 160404 - AL 0.4 VCGT 160408 - AL 0.8 VCMT 160408 - AL 0.8 VCMT 160408 - UF 0.4 VCMT 160408 - UF 0.8 VC	VCGT VCMT Обозначение RE Fn (мм/об.) VCGT 160402 - AL 0.2 0.02 ~ 0.05 VCGT 160404 - AL 0.4 0.05 ~ 0.25 VCMT 160404 - UF 0.4 0.05 ~ 0.25 VCMT 160408 - UF 0.8 0.05 ~ 0.25 VCMT 160404 - UG 0.4 0.10 ~ 0.20 VCMT 160408 - UG 0.8 0.18 ~ 0.35 Общего назначения VCMT 110304-MF 0.4 0.05 ~ 0.1 VCGT110301-SF 0.1 0.05 ~ 0.1 VCGT110302-SF 0.2 0.05 ~ 0.1 VCGT110304-SF 0.4 0.05 ~ 0.2	VCMT Обозначение RE (мм/об.) (мм) VCGT 160402 - AL 0.2 0.02 ~ 0.05 0.5 ~ 1.0 VCGT 160404 - AL 0.4 0.05 ~ 0.25 0.5 ~ 2.0 VCMT 160408 - AL 0.8 0.10 ~ 0.35 1.0 ~ 3.0 VCMT 160408 - UF 0.8 0.05 ~ 0.25 0.5 ~ 2.0 VCMT 160408 - UF 0.8 0.05 ~ 0.25 1.0 ~ 2.0 VCMT 160408 - UG 0.4 0.10 ~ 0.20 0.3 ~ 2.5 VCMT 160408 - UG 0.8 0.18 ~ 0.35 0.5 ~ 3.5 VCMT 160408 - UG 0.4 0.05 ~ 0.1 0.2 ~ 2.0 Истовая обработка жаропрочных VCGT110301-SF 0.1 0.05 ~ 0.1 0.2 ~ 2.0 VCGT110304-SF 0.4 0.05 ~ 0.2 0.2 ~ 2.0	VCGT VCMT Обозначение RE Fn (мм/об.) Ap (мм) бе VCGT 160402 - AL 0.2 0.02 ~ 0.05 0.5 ~ 1.0 VCGT 160404 - AL 0.4 0.05 ~ 0.25 0.5 ~ 2.0 VCMT 160408 - AL 0.8 0.10 ~ 0.35 1.0 ~ 3.0 VCMT 160404 - UF 0.4 0.05 ~ 0.25 0.5 ~ 2.0 VCMT 160408 - UF 0.8 0.05 ~ 0.25 1.0 ~ 2.0 VCMT 160408 - UF 0.8 0.10 ~ 0.20 0.3 ~ 2.5 VCMT 160408 - UG 0.8 0.18 ~ 0.35 0.5 ~ 3.5 Общего назначения VCMT 160408 - UG 0.4 0.05 ~ 0.1 0.2 ~ 2.0 Истовая обработка эржавеющей стали VCGT110301-SF 0.1 0.05 ~ 0.1 0.2 ~ 2.0 VCGT110302-SF 0.2 0.05 ~ 0.1 0.2 ~ 2.0 Истовая обработка жаропрочных VCGT110304-SF 0.4 0.05 ~ 0.2 0.2 ~ 2.0	VCGT Обозначение RE Fn (мм/об.) Ap (мм/ об.) 69 8 VCGT 160402 - AL 0.2 0.02 ~ 0.05 0.5 ~ 1.0 VCGT 160404 - AL 0.4 0.05 ~ 0.25 0.5 ~ 2.0 VCMT 160404 - UF 0.4 0.05 ~ 0.25 0.5 ~ 2.0 VCMT 160408 - UF 0.8 0.05 ~ 0.25 1.0 ~ 2.0 Чистовая обработка VCMT 160404 - UG 0.4 0.10 ~ 0.20 0.3 ~ 2.5 VCMT 160408 - UG 0.8 0.18 ~ 0.35 0.5 ~ 3.5 Общего назначения VCMT 110304-MF 0.4 0.05 ~ 0.1 0.2 ~ 2.0 VCGT110301-SF 0.1 0.05 ~ 0.1 0.2 ~ 2.0 VCGT110302-SF 0.2 0.05 ~ 0.2 0.2 ~ 2.0 VCGT110304-SF 0.4 0.05 ~ 0.2 0.2 ~ 2.0	VCGT VCMT Обозначение RE Fn (мм/об.) Ap (мм/об.) VCG T SO (мм/об.) P10 (мм/об.) P3 (мм/об.) P10 (мм/об.) P3 (мм/об.) P10 (мм/об.)	VCGT VCMT Обозначение RE Fn (мм/ об.) Apr (мм/ об.) P10 (мм/ об.) P33 (мм/ об.) P15 (жо.) P30 (мм/ об.) <	VCGT 160402 - AL	VCGT VCMT Обозначение RE Fn (мм/об.) Ap (мм) Fig. Fn (мм/об.) Ap (мм) Fig. Fn (мм/об.) Ap (мм) Fig. Fn (мм/об.) Ap (мм/об.) (мм/об.)	VCGT VCMT Обозначение VCGT 160402 - AL 0.2 0.02 ~ 0.05 ~ 0.5 ~ 1.0 No. (MM) <	VCGT VCMT Обозначение VCGT 160402 - AL 0.2 0.02 ~ 0.02 ~ 0.05 0.5 ~ 1.0 Ap тикул: 2200 K10 P05 P20 R30 P15 P20 P30 P30 P30 P30 P30 P30 P30 P30 P30 P3	VCGT тускит RE Fn (мм/об.) (мм) Fn (мм/об.) P15 (жм) P30 (жм)	VCGT тускуп: 2200 Apтикул: 2200 400 (мм) 60 (мм) <th< td=""><td>VCGT тускит Apтикул: 2200 Rol</td><td>VССМТ Обозначение RE Fn (мм/сб.) Ap (мм) 61 (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</td></th<>	VCGT тускит Apтикул: 2200 Rol	VССМТ Обозначение RE Fn (мм/сб.) Ap (мм) 61 (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2

	Скор	ость резания												Vo	(M	/ми	H.)											
ISO	VDI	Подгруппа	13.50		Y 400		1000	3010 Max	1000		100		7.5	559	PAR S	801 Max	X25	211 Max	100	213 Max	100	214 Max	YG Min	8515	14	100 Max	1000	G10 Max
	1~5	Нелегированная сталь	-	*	220	480	170	450	170	410	180	380	150	350	120	200		(4)	-	-	=			*	7	-	-	
P	6-9	Низколегиров. сталь		10	220	420	180	380	130	360	110	350	90	300	70	200		40		-	4			-		-	-	-
	10-11	Высоколегир. сталь					100	330	80	310	60	300	70	250		- 6	-	-				•	-	*		-		-
м	12~13	Феррит. и мартен. сталь	-	4	r	-95	*	-	-	. 7	-	9	120	230		×	130	230	110	180	80	150	-	7		+	-	-
IVI	14	Аустенит. нержав. сталь	-		(-)				4			4	80	200			100	200	40	130	30	120		*		4	-	
ĸ	15-16	Серый чугун	200	480	170	420	120	300	(e)		-		~	(m)		+	pēa.	-	-		-		-	-		-	17	-
^	17~18	Высокопрочный чугун	150	450	120	410	120	280	-		-	30	+	-		4	-	-			4	-	-	-	+	-	-	
N	21-30	Алюминий	12	4		4	4	140	2		-	21	3	-	4	4	4	ż	12	-	2	-6		*	350	1200	250	800
S	31-37	Суперсплавы и Титан		-		-	-				Ę.	,	35	80	÷		30	90	20	40	20	40	40	85			-	-
H	38~41	Высокотв. материалы	-								-		-	-	-			-				-			-	-	-	

Державки для наружного точения

Державки для наружного точения

7/GTURN

Державки для внутреннего точения

Серия		Держ	авки	
CCGT CCMT	SCFCR/L	SCLCR/L	ESCLCR/L	
	Винт	Винт	Винт	
c. 53	c. 84	c. 85	c. 85	
CNMA CNMG	PCLNR/L	TCLNR/L		
	Рычаг (+Прижим)	Прижим сверху		
c. 27	с. 86	с. 86		
c. 55	SDQCR/L Винт С. 87	spucr/L D D Винт С	ESDUCR/L BUHT C. 88	
DNMA DNMG	PDQNR/L	TDQNR/L	PDUNR/L	TDUNR/L
	Рычаг (+Прижим)	Прижим сверху	Рычаг (+Прижим)	Прижим сверху
c. 33	c. 89	c. 89	c. 89	c. 89
SNMA SNMG	PSKNR/L			
	Рычаг (+Прижим)			
c. 38	c.90		_	
TCGT TCMT		STUCR/L		
c. 59	Винт с. 91	Винт с.91		

Державки для внутреннего точения

Державки для наружного точения

Державки для СС** пластин

							0	:c.53	Ед изм: мм
Co	ерия	Обозначение	Артику R	л 25100 L	н	В	WF	LF	Пластина
	SCACR/L	SCACR/L 0808E 06	324	332	08	08	10	70	CC0602
- \$\$	(Винт 90°)								
-		SCLCR/L 0808E 06	340	352	08	08	10	70	ccocoa
		SCLCR/L 1010E 06	341	353	10	10	12	70	CC0602
		SCLCR/L 1010E 09	342	354	10	10	12	70	
		SCLCR/L 1212F 09	343	355	12	12	16	80	
\$	SCLCR/L	SCLCR/L 1616H 09	344	356	16	16	20	100	CC09T3
Sign	(Винт 95°)	SCLCR/L 2020K 09	345	357	20	20	25	125	
Fob		SCLCR/L 2525M 09	346	358	25	25	32	150	
		SCLCR/L 1616H 12	347	359	16	16	20	100	
		SCLCR/L 202 <mark>0K 12</mark>	349	361	20	20	25	125	CC1204
		SCLCR/L 2525M 12	351	363	25	25	32	150	

Серия	Paswep	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
SCACR/L	06	4008-M2.5x6	4		80-T08
	06	4008-M2.5x6	~		80-T08
	101009	4015-M3x9	· ·		80-T15
CCI CDA	121209	4015-M3.5x11	+		80-T15
SCLCR/L	1616~2525_09	4015-M3.5x14	AACN-2-0001	AAV-06-M3.5x11	80-T15
	161612	1020-M5x11	2	*	80-T20
	2020~2525_12	1020-M4.5x16	AACN-2-0003	AAV-07-M4.5x13	80-T20

Державки для наружного точения

Державки для CN** пластин

*'С' : Доп. прижим							0	c. 27	Ед изм: мм
Сери	អេ	Обрзначение	Артикул R	1 25101 L	Н	В	WF	LF	Пластина
		PCBNR/L 2020 K12C	136	144	20	20	17,5	125	
		PCBNR/L 2525 M12C	137	145	25	25	22,5	150	CN1204
160	PCBNR/L (Прижим 75°)	PCBNR/L 3232 P12C	138	146	32	32	29,5	170	
1/2	(i ibrowni/2)	PCBNR/L 2525M 16C	139	147	25	25	22	150	CN1606
		PCBNR/L 3232P 16C	140	148	32	32	27	170	CIVIOUO
		PCBNR/L 3232P 19C	141	149	32	32	37	170	
		PCBNR/L 4040S 19C	142	150	40	40	37	250	CN1906
		PCLNR/L 1616H 12	155	169	16	16	20	100	
		PCLNR/L 2020K 12C	156	170	20	20	25	125	CNICOCA
		PCLNR/L 2525M 12C	157	171	25	25	32	150	CN1204
9.	1350,274	PCLNR/L 3232P 12C	158	172	32	32	40	170	
	PCLNR/L (Прижим 95°)	PCLNR/L 2525M 16C	159	173	25	25	32	150	CNISCOC
K-06	(Centranadi i)	PCLNR/L 3232P 16C	160	174	32	32	40	170	CN1606
		PCLNR/L 2525M 19C	161	175	25	25	32	150	
		PCLNR/L 3232P 19C	162	176	32	32	40	170	CN1906
		PCLNR/L 4040S 19C	163	177	40	40	50	250	
		TCLNR/L 2020K 12	013	020	20	20	25	125	
	v2. seeds	TCLNR/L 2525M 12	014	021	25	25	32	150	CN1204
J.	TCLNR/L (Прижим сверху 95°)	TCLNR/L 3232P 12	015	022	32	32	40	170	
r do	(i ibroralivi cochyy 33)	TCLNR/L 2525M 16	018	025	25	25	32	150	CNITCOC
		TCLNR/L 3232P 16	019	026	32	32	40	170	CN1606

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Подкладная пластина	Винт. подкл. пластина	Втулка	Ключ
PCBNR/L	16C	APL-04	ALV-04-M8x22	ACK-09	AAV-05- M6x15	811	-2	AACN-3-0002	11.	AAY-03	AAL-03-3
PCBNR/L	19C	APL-05	ALV-05-M10x27	ACK-09	AAV-05- M6x15	+	-	AACN-3-0003	+	AAY-04	AAL-05-4
	12	APL-02	ALV-03-M8x19	4	1	8.	-	AACN-3-0001	7	AAY-02	AAL-03-3
	2020~323212C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11			AACN-3-0001		AAY-02	AAL-03-3
PCLNR/L	16C	APL-04	ALV-04-M8x22	ACK-09	AAV-05- M6x15	27	72	AACN-3-0002	(*)	AAY-03	AAL-03-3
	_19C	APL-05	ALV-05-M10x27	ACK-09	AAV-05- M6x15		*:	AACN-3-0003	*	AAY-04	AAL-05-4
TCLNR/L	12	T(HE	1 10 3	ATK-02	AKV-30- M6x22	ABPL-01	A5-01	AACN-3-0001	AAV-02-M5x12		AAL-03-3
ICLNR/L	16	*		ATK-04	AKV-19- M7x25	ABPL-02	~	AACN-3-0002	AAV-05-M6x15	-	AAL-05-4

7/GTURN

Державки для наружного точения

Державки для CN** пластин с направленной подачей СОЖ

:Доп, прижим							0	c. 27	Ед.изм.: ми
Ce	рия	Обозначение	Артику R	л 25101. L	Н	В	WF	LF	Пластина
	DCI ND/I	PCLNR/L 2020K 12-H	019	020	20	20	25	125	
	PCLNR/L (С направленной	PCLNR/L 2525M 12- H	021	022	25	25	32	150	CN1204
35	подачей СОЖ)	PCLNR/L 3232P 12- H	123	024	32	32	40	170	
		PCLNR/L 3232 P16-H	125	126	32	32	40	170	CN1606
		PCLNR/L 3232 P19-H	127	128	32	32	40	170	CN1906
95	TCLNR/L	TCLNR/L 2020K 12-H	000	001	20	20	25	125	
	(С направленной	TCLNR/L 2525M 12-H	002	003	25	25	32	150	CN1204
7	подачей СОЖ)	TCLNR/L 3232P 12-H	004	005	32	32	40	170	

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Подкл. пластина	Винт. подкл. пластина	Втулка	Заглушка	Ключ
"PCLNR/L	12	APL-03	ALV-03- M8x19	AN-01		α.	9	AACN-3-0001	2	AAY-02	2705-G1/8x5.5	AAL-03-3
TCLNR/L	12	-	4	ATKH-01-R	AKV-30-M6x22	ABPL-01	AS-01	AACN-3-0001	AAV-02-M5x12	-	2705-G1/8x5.5	AAL-03-3

Державки для наружного точения

Державки для DC** пластин

Ед, изм.: мм	c. 55	o:												
Пластина	LF	WF	В	Н	25101 L	Артикул R	Обозначение	in .	Сери					
	70	4	08	08	30	38	SDNCN 0808E 07		62.5					
DC0702	70	5	10	10	31	38	SDNCN 1010E 07							
DC0702	80	6	12	12	32	38	SDNCN 1212F 07							
	100	8	16	16	33	38	SDNCN 1616H 07	SDNCN						
	100	8	16	16	34	38	SDNCN 1616H 11	(Винт 62.5°)						
DC11T2	125	10	20	20	SDNCN 2020K 11 385									
DC11T3	150	12.5	25	25	36	SDNCN 2525M 11 386								
	170	16	32	32	37	38	SDNCN 3232P 11							
	70	10	08	08	372	364	SDJCR/L 0808E 07							
DC0702	70	12	10	10	373	365	SDJCR/L 1010E 07							
DC0/02	80	16	12	12	374	366	SDJCR/L 1212F 07							
	100	20	16	16	375	367	SDJCR/L 1616H 07	SDJCR/L						
	100	20	16	16	376	368	SDJCR/L 1616H 11	(Винт93°)	S. S					
DC11T3	125	25	20	20	377	369	SDJCR/L 2020K 11							
DCITIS	150	32	25	25	378	370	SDJCR/L 2525M 11							
	170	40	32	32	379	371	SDJCR/L 3232P 11							

Серия	Размер	Винт	Подкладная пластина	Винтовая подкладиая пластина	Ключ
CONCN	07	4008-M2.5x6		15	80-T08
SDNCN	.11	4015-M3.5x14	AADN-2-0001	AAV-06-M3.5x11	80-T15
CD ICD#	07	4008-M2.5x6	3	4	80-T08
SDJCR/L -	211	4015-M3.5x14	AADN-2-0001	AAV-06-M3.5x11	80-T15

MHANHOWHM PAYDEMHYET

Державки для наружного точения

Державки для DN** пластин

п. прижим							0	c. 33	Ед изм: м
Ce	рия	Обозначение	Артикул В	125100 L	Н	В	WF	LF	Пластина
	TDHNR/L	TDHNR/L 2020K 15	517	519	20	20	25	125	DNAFOC
1018	(Прижим сверху 107.5°)	TDHNR/L 2525M 15	518	520	25	25	32	150	DN1506
62.5	420027	PDNNN 2020K 15C	20	02	20	20	10	125	
	PDNNN (Прижим 62.5°)	PDNNN 2525M 15C	20)3	25	25	12.5	150	DN1506
	(i iprotoati 02.5)	PDNNN 3232P 15C	20	04	32	32	16	170	
		TDNNN 2020K 15	0:	58	20	20	10	125	
	ТDNNN (Прижим сверху 62.5°)	TDNNN 2525M 15 059			25	25	12.5	150	DN1506
325		TDNNN 3232P 15	060		32	32	16	170	
		PDJNR/L 2020K 15C	188	195	20	20	25	125	
	PDJNR/L	PDJNR/L 2525M 15C	189	196	25	25	32	150	DNIITOC
10	(Рычаг 93°)	PDJNR/L 3232P 15C	190	197	32	32	40	170	DN1506
₹		PDJNR/L 4040S 15C	191	198	40	40	50	250	
ATT		TDJNR/L 2020K 15	036	047	20	20	25	125	
	TDJNR/L	TDJNR/L 2525M 15	037	048	25	25	32	150	DN11 506
70	(Прижим сверху 93°)	TDJNR/L 3232P 15	038	049	32	32	40	170	DN1506
ශ්රී		TDJNR/L 4040S 15	039	050	40	40	50	250	

Серил	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
TDHNR/L	15		17	ATK-02	AKV-30- M6x22	ABPL-01	AS-01	AADN-3-0001	AAV-02-M5x12	5.	AAL-03-3
PDNNN	15C	APL-03	ALV-03-M8x19	ACK-05	Y4015-M4x11	*		AADN-3-0001		AAY-02	AAL-03-3
TDNNN	15		19	ATK-02	AKV-30- M6x22	ABPL-01	AS-01	AADN-3-0001	AAV-02-M5x12	-1.8	AAL-03-3
PDJNR/L	15C	APL-03	ALV-03-M8x19	ACK-05	Y4015-M4x11			AADN-3-0001		AAY-02	AAL-03-3

Державки для наружного точения

Державки для DN** пластин с направленной подачей СОЖ

							⊙:c.	33	Ед, изм.: мм
Ce	рия	Обозначение	Артикул R	1 25101 L	н	В	WF	LF	Пластина
	TDJNR/L	TDJNR/L 2020K 15 - H	006	007	20	20	25	125	
	(Снаправленной	TDJNR/L 2525M 15 - H	800	009	25	25	32	150	DN1506
Sis	подачей СОЖ)	TDJNR/L 3232P 15 - H	010	011	32	32	40	170	
	DD IND#	RDJNR/L 2020K 15 - H	006	007	20	20	25	125	
	PDJNR/L (С направленной	RDJNR/L 2525M 15 - H	800	009	25	25	32	150	DN1506
S	подачей СОЖ)	RDJNR/L 3232P 15 - H	010	011	32	32	40	170	
	r salasas	TDNNN 2525M 15 - H	01	2	25	25	12.5	150	
825	ТDNNN (С направленной подачей СОЖ)	BR	ROI	EG	H				DN1506
	n Telland	PDNNN 2525M 15 - H	03	1	25	25	12.5	150	
625	PDNNN (С направленной подачей СОЖ)								DN1506

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Пружина	Кольцо	Подкл. пластина	Винт. подкл. пластина	Втулка	Заглушка	Ключ
"TDJNR/L	20, 25, 32	7	,	ATKH-01-R ATKH-02-L	AKV-33-M6x22	AKY-01	AXR-01	AADN-3-0001	AAV-02-M5x12	-	2705-G1/8x5.5	AAL-03-3
PDJNR/L	20, 25, 32	APL-02	ALV-03- M8x19	AN-01	-	*	AXR-01 AOR-01	AADN-3-0001	7	AAY-02	2705-G1/8x5.5	AAL-03-3
"TDNNN	25	n sec	•	ATKH-01-R	AKV-33-M6x22	AKY-01	AXR-01	AADN-3-0001	AAV-02-M5x12		2705-G1/8x5.5	AAL-03-3
PDNNN	25	APL-03	ALV-03- M8x19	AN-01		ŧ	AXR-01 AOR-01	AADN-3-0001		AAY-02	2705-G1/8x5.5	AAL-03-3

S

Державки для KN** пластин

Ед изм: мм	c. 37	0:		>			-		
Пластина	LF	WF	В	н	25100 L	Артикул В	Обозначение	Серия	
	150	31.5	25	25	321	317	CKJNR/L 2525M 16		
KNUX1604	170	40	32	32	322	318	CKJNR/L 3232P 16	CKJNR/L	

Серия	Размер	Прижим	Винт прижима	Пружина	Шайба	Подкладная пластина	Винтовая подкладная пластина	Ключ
CKJNR	16	ACK-01-R	AKV-06-M6x20	AKY-02	ABPL-01	AKS-16-R	AAV-01-M3x10	AAL-05-4
CKJNL	16	ACK-01-L	AKV-06-M6x20	AKY-02	ABPL-01	AKS-16-L	AAV-01-M3x10	AAL-05-4

Державки для RC** пластин

400		•			->	⊚:c.57			
Сері	Ая	Обозначение	Артикул R	125100 L	н	В	WF	LF	Пластина
		SRGCR/L 1616H 06	521	533	16	16	20	100	DCOCOO
		SRGCR/L 2020K 06	522	534	20	20	25	125	RC0602
		SRGCR/L 1616H 08C	523	535	16	16	32	100	
		SRGCR/L 2020K 08C	524	536	20	20	25	125	RC0803
-		SRGCR/L 2525M 08C	SRGCR/L 2525M 08C 525 5		25	25	32	150	
8	SRGCR/L	SRGCR/L 1616H 10C	526	538	16	16	20	100	
	(Винт 90")	SRGCR/L 2020K 10C	527	539	20	20	25	125	DCLOTT
		SRGCR/L 2525M 10C	528	540	25	25	32	150	RC10T3
		SRGCR/L 3232P 10C	529	541	32	32	40	170	
		SRGCR/L2020K12C	530	542	20	20	25	125	
		SRGCR/L2525M12C	531	543	25	25	32	150	RC1204
		SRGCR/L 3232P 12C	532	544	32	32	40	170	
		SRDCN 1616H 06 38		38	16	16	8	100	
		SRDCN 2020K 06	SRDCN 2020K 06 389		20	20	10	125	RC0602
		SRDCN 2525M 06	39	90	25	25	12.5	150	
		SRDCN 1616H 08C	39	91	16	16	8	100	
T		SRDCN 2020K 08C	39	92	20	20	10	125	RC0803
00		SRDCN 2525M 08C	39	93	25	25	12.5	150	
	SRDCN (Bинт 90°)	SRDCN 1616H 10C	39	94	16	16	8	100	
	(DIIII 30)	SRDCN 2020K 10C	39	95	20	20	10	125	DC10T3
		SRDCN 2525M 10C	39	96	25	25	12.5	150	RC10T3
		SRDCN 3232P 10C	39	97	32	32	16	170	
		SRDCN 2020K 12C	39	98	20	20	10	125	
		SRDCN 2525M 12C	39	99	25	25	12.5	150	RC1204
		SRDCN 3232P 12C	400		32	32	16	170	

Серия	Размер	Прижим	Винт прижима	Винт	Ключ
	06	. 8 .	15	3008-M2.5x6	80-T08
cocco#	161608C	ACK-15	4015-M3.5x11	3008-M3x8	80-T08
SRGCR/L	10C	ACK-15	4015-M3.5x11	3008-M3x8	80-T15
	12C	ACK-05	4015-M4x11	4015-M3.5x11	80-T15
	06	- 8	8	3008-M2.5x6	80-T08
CODCN	08C	ACK-15	4015-M3.5x11	3008-M3x8	80-T08
SRDCN	10C	ACK-15	4015-M3.5x11	4015-M3.5x11	80-T15
	12C	ACK-05	4015-M4x11	4015-M3.5x11	80-T15

Державки для SC** пластин

							0:	c. 58	Ед изм: м
Сери	AST.	Обозначение	Артику: В	125100 L	H	В	WF	LF	Пластина
		SSDCN 1212F 09	4)1	12	12	6	80	
		SSDCN 1616H 09	402		16	16	8	100	SC09T3
O	SSDCN	SSDCN 2020K 09	4	03	20	20	10	125	
D.	(Винт 4 5°)	SSDCN 1616H 12	4	04	16	16	8	100	
		SSDCN 2020K 12	4	05	20	20	10	125	SC1204
		SSDCN 2525M 12	4	%	25	25	12.5	150	
		SSSCR/L 1212F 09	411	421	12	12	16	80	
		SSSCR/L 1616H 09	413	423	16	16	20	100	SC09T3
	SSSCR/L	SSSCR/L 2020K 09	415	425	20	20	25	125	
45°	(Винт 4 5°)	SSSCR/L 1616H 12	416	426	16	16	20	100	
		SSSCR/L 2020K12	418	428	20	20	25	125	SC1204
		SSSCR/L 2525M 12	420	430	25	25	32	150	

Серия	Размер	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
	121209	4015-M3.5x11	+	-	80-T15
SSDCN	1616~202009	4015-M3.5x14	AASN-2-0001	AAV-06-M3.5x11	80-T15
SSICIN	161612	4020-M4.5x12	AASN-2-0004	AAV-10-M4.5x8	80-T20
	2020~252512	1020-M4.5x16	AASN-2-0004	AAV-07-M4.5x13	80-T20
	121209	4015-M3.5x11	(+	-	80-T15
SSSCR/L	1616~202009	4015-M3.5x14	AASN-2-0001	AAV-06-M3.5x11	80-T15
333CH/L	161612	4020-M4.5x12	AASN-2-0004	AAV-10-M4.5x8	80-T20
	2020~252512	1020-M4.5x16	AASN-2-0004	AAV-07-M4.5x13	80-T20

Державки для SN** пластин

*'С' : Доп. прижим						0	c. 38	Ед изм.: мм
Серия	Обозначение	Артику: R	125100 L	Н	В	WF	LF	Пластина
	PSDNN 2020K 12C	22	26	20	20	10	125	
PSDNN (Рычаг 45°)	PSDNN 2525M 12C	22	27	25	25	12.5	150	SN1204
as (romai 45)	PSDNN 3232P 12C	22	28	32	32	16	170	
	TSDNN 1616H 12 545			16	16	8	100	
TSDNN	TSDNN 2020K 12	54	16	20	20	10	125	
(Прижим сверху 45°)	TSDNN 2525M 12	54	47	25	25	12.5	150	SN1204
45	TSDNN 3232P 12	54	48	32	32	16	170	
	PSSNR/L 2020K 12C	254	262	20	20	25	125	
PSSNR/L (Pычаг 45°)	PSSNR/L 2525M 12C	255	263	25	25	32	150	SN1204
45° (FBI4al 45)	PSSNR/L 3232P 12C	256	264	32	32	40	170	
	TSSNR/L 2020K 12	069	074	20	20	25	125	
TSSNR/L (Прижим сверху 45°)	TSSNR/L 2525M 12	070	075	25	25	32	150	SN1204
45	TSSNR/L 3232P 12	071	076	32	32	40	170	
	PSBNR/L 2020K 12	206	216	20	20	17	125	
PSBNR/L (Рычаг 75°)	PSBNR/L 2525M 12C	207	217	25	25	22	150	SN1204
10	PSKNR/L 2020K 12C	233	243	20	20	25	125	
PSKNR/L (Pычаг 75°)	PSKNR/L 2525M 12C	234	244	25	25	32	150	SN1204
(FBMai 73)	PSKNR/L 3232P 12C	235	245	32	32	40	170	
	TSKNR/L 2020K 12	061	065	20	20	25	125	
TSKNR/L (Прижим сверху 75°)	TSKNR/L 2525M 12	062	066	25	25	32	150	SN1204
(i ibaniani cechy) 13)	TSKNR/L 3232P 12	063	067	32	32	40	170	

Серия	Pausen	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
PSDNN	12C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11			AASN-3-0004		AAY-02	AAL-03-3
TSDNN	_12	-	-	ATK-02	AKV-30- M6x22	ABPL-01	AS-01	AASN-3-0004	AAV-02-M5x12	0-	AAL-03-3
PSSNR/L	_12C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11	34		AASN 3-0004	-	AAY-02	AAL-03-3
TSSNR/L	12	8	~	ATK-02	AKV-30- M6x22	ABPL-01	AS-01	AASN-3-0004	AAV-02-M5x12	-	AAL-03-3
occupa.	12	APL-02	ALV-03-M8x19	19	9.4	-	2	AASN-3-0004	-	AAY-02	AAL-03-3
PSBNR/L	12C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11			AASN-3-0004		AAY-02	AAL-03-3
PSKNR/L	12C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11	- 2	- +	AASN-3-0004	-2	AAY-02	AAL-03-3

NHOOPMALING

Державки для наружного точения

Державки для ТС** пластин

							0	c. 59	Ед изм.: мм
Сер	ия	Обозначение	Артику: П	1 25100 L	Н	В	WF	LF	Пластина
		STFCR/L 1212F 11	433	441	12	12	16	80	TC1102
		STFCR/L 1616H 11	434	442	16	16	20	100	101102
	STFCR/L	STFCR/L 1616H 16	435	443	16	16	20	100	
	(Винт 90°)	STFCR/L 2020K 16	436	444	20	20	25	125	TC1CTO
		STFCR/L 2525M 16	437	445	25	25	32	150	TC16T3
		STFCR/L 3232P 16	438	446	32	32	40	170	
		STGCR/L 1212F 11	549	555	12	12	16	80	TC1100
		STGCR/L 1616H 11	550	556	16	16	20	100	TC1102
	STGCR/L	STGCR/L 1616H 16	551	557	16	16	20	100	
28	(Винт 90°)	STGCR/L 2020K 16	552	558	20	20	25	125	TC4.CT3
90		STGCR/L 2525M 16	553	559	25	25	32	150	TC16T3
		STGCR/L 3232P 16	554	560	32	32	40	170	
		STJCR/L 1212F 11	449	457	12	12	16	6 80	TC1100
		STJCR/L 1616H 11	450	458	16	16	20	100	TC1102
	STJCR/L	STJCR/L 1616H 16	451	459	16	16	20	100	
3.	(Винт 93°)	STJCR/L 2020K 16	452	460	20	20	25	125	TC1CT2
M-035		STJCR/L2525M 16	453	461	25	25	32	150	TC16T3
		STJCR/L 3232P 16	454	462	32	32	40	170	
		STUCR/L 1212F 11	465	472	12	12	16	80	TC4400
		STUCR/L 1616H 11	466	473	16	16	20	100	TC1102
	STUCR/L (Винт93°)	STUCR/L 2020K 16	467	474	20	20	25	125	1 70 6
	(DVINI 93.)	STUCR/L 2525M 16	468	475	25	25	32	150	TC16T3
		STUCR/L 3232P 16	469	476	32	32	40	170	
							1	1	1

Серия	Размер	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
CTT-CD/I	.11	4008-M2.5x6			80-T08
STFCR/L	16	4015-M3.5x14	AATN-2-0001	AAV-06-M3,5x11	80-T15
CTCCD/I	11	4008-M2.5x6	15	-	80-T08
STGCR/L	16	4015-M3.5x14	AATN-2-0001	AAV-06-M3.5x11	80-T15
CTICD#	.11	4008-M2.5x6		+ -	80-T08
STJCR/L	16	4015-M3.5x14	AATN-2-0001	AAV-06-M3.5x11	80-T15
CTI ICDA	11	4008-M2.5x6	4		80-T08
STUCRAL	16	4015-M3.5x14	AATN-2-0001	AAV-06-M3.5x11	80-T15

Державки для TN** пластин

*'С' : Доп. прижим							0	c. 42	Ед. изм.: мм
G	ерия	Обрзначение	Артикул В	25100 L	Н	В	WF	LF	Пластина
		PTTNR/L 2020K 16	561	565	20	20	17	125	TNICOA
20	PTTNR/L	PTTNR/L 2525M 16	562	566	25	25	21.5	150	TN1604
	(Рычаг 60°)	PTTNR/L 2525M 22C	563	567	25	25	20.5	150	TN2204
1.60		PTTNR/L 3232P 22C	564	568	32	32	29	170	TN2204
		PTFNR/L 1616H 16	268	274	16	16	20	100	
	1	PTFNR/L 2020K 16	269	275	20	20	25	125	TN1604
2.2	PTFNR/L (Pычаг 90°)	PTFNR/L 2525M 16	270	276	25	25	32	150	TN1604
2	(i bistal 50)	PTFNR/L 3232P 16	271	277	32	32	40	170	
		PTFNR/L 3232P 22C	273	279	32	32	40	170	TN2204
	- 1	PTGNR/L 1616H 16	280	285	16	16	20	100	
	100000	PTGNR/L 2020K 16	281	286	20	20	25	125	TN1604
%	PTGNR/L (Pычаг 90°)	PTGNR/L 2525M 16	282	287	25	25	32	150	
S	(i bistai 50)	PTGNR/L 2525M 22C	283	288	25	25	32	150	TNOOA
. 9		PTGNR/L 3232P 22C	284	289	32	32	40	170	TN2204
		TTGNR/L 2020K 16	569	575	20	20	25	125	
		TTGNR/L 2525M 16	570	576	25	25	32	150	TN1604
	TTGNR/L	TTGNR/L 3232P 16	571	577	32	32	40	170	
	(Прижим сверху 90°)	TTGNR/L 2525M 22	572	578	25	25	32	150	
1-3°		TTGNR/L 3232P 22	573	579	32	32	40	170	TN2204
		TTGNR/L 4040S 22	574	*	40	40	50	250	

Серия	Palmep	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Штифт	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
DTTMDA	16	APL-01	ALV-02-M6x17		15	8.		12	AATN-3-0025	-	AAY-01	AAL-02-2.5
PTTNR/L	22C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11	-			AATN-3-0015	4	AAY-02	AAL-03-3
DTEND/I	16	APL-01	ALV-02-M6x17	41		100	•		AATN-3-0025		AAY-01	AAL-02-2.5
PTFNR/L	-22C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11	¥	-	~	AATN-3-0015	~	AAY-02	AAL-03-3
DTCND#	_16	APL-01	ALV-02-M6x17	•	- 8-	□ Q □		- 8	AATN-3-0025		AAY-01	AAL-02-2.5
PTGNR/L	22C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11	÷	-	ė	AATN-3-0015	4	AAY-02	AAL-02-2.5
TTCNDA	_16	- P-		ATK-01	AKV-01-M5x22	ABPL-01			AATN-2-0002	AAV-03-M5x12	- 5	AAL-03-3
TTGNR/L -	22	-	÷	ATK-02	AKV-30-M6x22	ABPL-01	AS-01		AATN-3-0015	AAV-02-M5x12		AAL-03-3

▶ Далее

Державки для TN** пластин

оп. прижим							0	c.42	Ед изм: м
Co	:рия	Обозначение	Артику R	n 25100 L	Н	В	WF	LF	Пластин
		MTJNR/L 2020K 16	112	118	20	20	25	125	1
	1 / 2 / 2	MTJNR/L 2525M 16	113	119	25	25	32	150	TN1604
	MTJNR/L	MTJNR/L 3232P 16	114	120	32	32	40	170	
	(Штифт+Прижим сверху93°)	MTJNR/L 2525M 22	115	121	25	25	32	150	
4 95		MTJNR/L 3232P 22	116	122	32	32	40	170	TN2204
		MTJNR/L 40405 22	117	123	40	40	50	250	
		PTJNR/L 1616H 16	290	296	16	16	20	100	
	1	PTJNR/L 2020K 16	291	297	20	20	25	125	TNIICOA
NO.	PTJNR/L	PTJNR/L 2525M 16	292	298	25	25	32	150	TN160-
	(Рычаг 93")	PTJNR/L 3232P 16	293	299	32	32	40	170	
₹ ogs		PTJNR/L 2525M 22C	294	300	25	25	32	150	7312200
		PTJNR/L 3232P 22C	295	301	32	32	40	170	TN2204
		TTJNR/L 2020K 16	079	084	20	20	25	125	
		TTJNR/L 2525M 16	080	085	25	25	32	150	TN1604
	ТТЈNR/L (Прижим сверху 93°)	TTJNR/L 3232P 16	081	086	32	32	40	170	
Si	(IPANNIN CECHY) 33 /	TTJNR/L 2525M 22	082	087	25	25	32	150	TAIDOO
-50		TTJNR/L 3232P 22	083	088	32	32	40	170	TN2204

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Штифт	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
AATIND#	16		-	AMK-04	AKV-30-M6x22	ABPL-01	AS-01	APM-01	AATN-2-0002		4	AAL-03-3
MTJNR/L	22	=	-	AMK-04	AKV-30-M6x22	ABPL-01	AS-01	APM-02	AATN-3-0015	4	4	AAL-03-3
DTIMD#	_16	APL-01	ALV-02-M6x17		-09	1.51	7	- 7	AATN-3-0025		AAY-01	AAL-02-2.5
PTJNR/L	22C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11			4	AATN-3-0015	-	AAY-02	AAL-03-3
TTIMDA	16	-	-2	ATK-01	AKV-01-M5x22	ABPL-01		-4.1	AATN-2-0002	AAV-03-M5x12	(4)	AAL-03-3
TTJNR/L -	22	-41	-	ATK-02	AKV-30-M6x22	ABPL-01	AS-01		AATN-3-0015	AAV-02-M5x12	3	AAL-03-3

7GTURN

Державки для наружного точения

Державки для VB** пластин

							[0]	c. 60	Ед, изм.: мм
Сері	na	Обозначение	Артикул R	125100 L	H	В	WF	LF	Пластина
		SVHBR/L 2020K 16	580	583	20	20	25	125	
67	SVHBR/L	SVHBR/L 2525M 16	581	584	25	25	32	150	VP1604
MIS	(Винт 107 <i>5</i> °)	SVHBR/L 3232P 16	582	585	32	32	40	170	VB1604
	- ESEA	SVVBN 2020K 16	50	08	20	20	10	125	
	SVVBN (Винт 72.5°)	SVVBN 2525M 16	50	09	25	25	12.5	150	VB1604
725	(DVIRT /25)	SVVBN 3232P 16	51	10	32	32	16	170	
1		SVJBR/L 1616H 16	480	487	16	16	20	100	
	SVJBR/L	SVJBR/L 2020K 16	481	488	20	20	25	125	VD1COA
407	(Винт 93°)	SVJBR/L 2525M 16	482	489	25	25	32	150	VB1604
ශ්රී		SVJBR/L 3232P 16	483	490	32	32	40	170	

Серия	Размер	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
SVHBR/L	16	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15
SVVBN	16	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15
SVJBR/L	16	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15

Державки для VC** пластин

							0	c.61	Ед.изм.: мм
G	ерия	Обозначение	Артику: П	л 25100 L	Н	В	WF	LF	Пластина
		SVHCR/L 2020K 16	586	589	20	20	25	125	
67	SVHCR/L	SVHCR/L 2525M 16	587	590	25	25	32	150	VC1604
1015	(Винт 107.5°)	SVHCR/L 3232P 16	588	591	32	32	40	170	VC1604
`	t contract	SVVCN 2525M 16	5	15	25	25	12.5	150	
725	SVVCN (Винт 72.5°)	SVVCN 3232P 16	5	16	32	32	16	170	VC1604
/		SVJCR/L 1212F 16	494	501	12	12	16	80	
	SVJCR/L	SVJCR/L 2020K 16	495	502	20	20	25	125	VC1604
40/5	(Винт 93°)	SVJCR/L 2525M 16	496	503	25	25	32	150	VC1604
్యేక		SVJCR/L 3232P 16	497	504	32	32	40	170	

BROTECH

Серия	Paswep	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
SVHCR/L	16	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15
SVVCN	16	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15
CVICDA	121216	4015-M3.5x11	1		80-T15
SVJCR/L	2020~323216	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15

Державки для VN** пластин

Ce	рия	Обозначение	Артикул R	25101 L	н	В	WF	LF	Пластина
	Zuahr C	TVVNN 2020K 16	09	5	20	20	10	125	
	TVVNN (Прижим сверху 72.5°)	TVVNN 2525M 16	VNN 2525M 16 096		25	25	12.5	150	VN1604
725	(примим сверху 72.5)	TVVNN 3232P 16	09	7	32	32	16	170	
AT		TVJNR/L 2020K 16	089	092	20	20	25	125	
	TVJNR/L	TVJNR/L 2525M 16	090	093	25	25	32	150) minera
	(Прижим сверху 93°)	TVJNR/L 3232P 16	091	094	32	32	40	170	VN1604
ශ්රී									

Серия	Размер	Прижим	Винт прижима	Пружина	Кольца	Подкладная пластина	Винтовая подкладная пластина	Ключ
TVVNN	16	ATK-03	AKV-30-M6x22	ABPL-01	AS-01	AAVN-2-0002	AAV-04-M5x12	AAL-03-3
TVJNR/L	16	ATK-03	AKV-30-M6x22	ABPL-01	AS-01	AAVN-2-0002	AAV-04-M5x12	AAL-03-3

Державки для WN** пластин

Доп. прижим						0	c 49	Ед изм: мм
Серия	Обозначение	Артику: В	n 25100 L	Н	В	WF	LF	Пластин
	MWLNR/L 1616H 06	124	130	16	16	20	100	
	MWLNR/L 2020K 06	125	131	20	20	25	125	WN0604
MWLNR/L	MWLNR/L 2525M 06	126	132	25	25	32	150	
(Штифт+Прижим сверху 95°)	MWLNR/L 2020K 08	127	133	20	20	25	125	
Số CHANGO T	MWLNR/L 2525M 08	128	134	25	25	32	150	WN0804
	MWLNR/L 3232P 08	129	135	32	32	40	170	
	PWLNR/L 1616H 06	302	309	16	16	20	100	
	PWLNR/L 2020K 06	303	310	20	20	25	125	WN0604
	PWLNR/L 2525M 06	304	311	25	25	32	150	
PWLNR/L (Рычаг95°)	PWLNR/L 1616H 08	305	312	16	16	20	100	
So (FBI-Idi 93)	PWLNR/L 2020K 08C	306	313	20	20	25	125	MANOGOA
	PWLNR/L 2525M 08C	307	314	25	25	32	150	WN0804
	PWLNR/L 3232P 08C	308	315	32	32	40	170	
	TWLNR/L 1616H 06	098	105	16	16	20	100	
	TWLNR/L 2020K 06	099	106	20	20	25	125	WN0604
	TWLNR/L 2525M 06	100	107	25	25	32	150	
TWLNR/L (Прижим сверху 95°)	TWLNR/L 2020K08	101	108	20	20	25	125	
Si (protonicacpy) 3)	TWLNR/L 2525M 08	102	109	25	25	32	150	WN0804
	TWLNR/L 3232P 08	103	110	32	32	40	170	WN0804
	TWLNR/L 40405 08	104	111	40	40	50	250	

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Штифт	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
14144 ND 4	06	8	- 8	AMK-01	AKV-04-M5x17	8	-	APM-08		14	- ×	AAL-03-3
MWLNR/L	08		-	AMK-05	AKV-03-M6x22	ABPL-01	AS-01	APM-02	AAWN-3-0001	1+1	-	AAL-03-3
	06	APL-01	ALV-02-M6x17	*	-	-	- 6		AAWN-SW317		AAY-01	AAL-02-2.5
PWLNR/L	08	APL-02	ALV-03-M8x19	8	-	7		-	AAWN-3-0001	14	AAY-02	AAL-03-3
	08C	APL-02	ALV-03-M8x19	ACK-05	Y4015-M4x11	108	,	ь	AAWN-3-0001	THE STATE OF THE S	AAY-02	AAL-03-3
7110 110 0	06	10	9	ATK-01	AKV-01-M5x22	ABPL-01	141	14	AAWN-SW317	AAV-01-M3x10	14	AAL-03-3
TWLNR/L	08		9	ATK-02	AKV-30-M6x22	ABPL-01	AS-01	- 0	AAWN-3-0001	AAV-02-M5x12	2	AAL-03-3

Державки для WN** пластин с направленной подачей СОЖ

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Подкл. пластина	Винт. подкл. пластина	Втулка	Заглушка	Ключ
PWLNR/L	20, 25	APL-02	ALV-03- M8x19	AN-01		5	AXR-01 AOR-01	AAWN-3-0001	*	The company.	2705-G1/8x5.5	AAL-03-3
TWLNR/L	20, 25, 32	1+		ATKH-01-R ATKH-02-L	AKV-30-M6x22	AKY-01	AXR-01	AAWN-3-0001	AAV-02-M5x12	-	2705-G1/8x5.5	AAL-03-3

MHOOPMALLINA

Державки для внутреннего точения

Державки для СС** пластин

[○]:c.53

Ед.изм: мм

Сери	n .		Обозначение	Артику R	n 25200 L	DMIN	DCON	Н	WF	LF	Пластина
			S08H - SCFCR/L 06	337	345	11	08	7.3	6	100	
		X	S10K - SCFCR/L 06	338	346	13	10	9	7	125	CC0602
			S12K - SCFCR/L 06	339	347	16	12	11	9	125	
SCFCI	SCFCR/L		S12K - SCFCR/L 09	340	348	16	12	11	9	125	
os o	(Винт 90°)	v	S16P - SCFCR/L 09	341	349	20	16	14.8	11	170	CCOOT
1		X	S20R - SCFCR/L 09	342	350	25	20	18.3	13	200	CC09T3
			S25S - SCFCR/L 09	343	351	32	25	23	17	250	
		X	S25S - SCFCR/L 12	140	140	32	25	23	17	250	CC1204

▶ Далее

Серия	Paswep	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
	06	4008-M2.5x6			80T08
	1209	4015-M3.5x8	~	-	80-T15
SCFCR/L	16~2009	4015-M3.5x9	4.		80-T15
	2509	4015-M3.5x12	AACN-2-0001	AAV-08-M3.5x8	80-T15
	12	4020-M4.5x12	AACN-2-0003	AAV-10-M4.5x8	80-T20

Державки для СС** пластин

								[○]:c.	53	Ед изм.: мм
Серия		Обозначение	Apreniy R	25200 L	DMIN	DCON	н	WF	L.F	Пластина
		A08H - SCLCR/L 06	185	193	11	08	7.3	6	100	
		A10H-SCLCR/L06	186	194	13	10	9	7	100	
		A12H-SCLCR/L06	187	195	16	12	11	9	100	
		S08H - SCLCR/L 06	154	170	11	08	7.3	6	100	CC0602
	v	S10K - SCLCR/L 06	155	171	13	10	9	7	125	
	X	S12K - SCLCR/L 06	156	172	16	12	11	9	125	
		S16P - SCLCR/L 06	158	174	20	16	14.8	11	170	
		A16M-SCLCR/L09	188	196	20	16	14.8	11	150	
		A20P - SCLCR/L 09	189	197	25	20	18.3	13	170	
SCLCR/L	•	A25R - SCLCR/L 09	190	198	32	25	23	17	200	
% (Винт 95°)		A325 - SCLCR/L 09	191	199	40	32	30	22	250	
		S12K - SCLCR/L 09	159	175	16	12	11	9	125	CC09T3
		S16P-SCLCR/L09	161	177	20	16	14.8	111	170	
	X	S20R - SCLCR/L 09	163	179	25	20	18.3	13	200	
		S25S - SCLCR/L 09	164	180	32	25	23	17	250	
		S32T - SCLCR/L 09	165	181	40	32	30	22	300	
	•	A25R-SCLCR/L12	192	200	32	25	23	17	200	
		S25S - SCLCR/L 12	166	182	32	25	23	17	250	
	X	S32T - SCLCR/L 12	167	183	40	32	30	22	300	CC1204
		S40U - SCLCR/L 12	168	184	50	40	37.5	27	350	
TOTAL PROPERTY OF		E08K - SCLCR/L 06	319	324	11	08	7.3	6	125	
ESCLCR/L	•	E12Q - SCLCR/L 06	321	326	16	12	11	9	180	CC0602
(Винт 95°, Твердый сплав)		E16R - SCLCR/L 09	322	327	20	16	14.8	11	200	FFEETE
	•	E20S - SCLCR/L 09	323	328	24	20	18.3	13	250	CC09T3

Сория	Размер	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
	06	4008-M2.5x6			80T08
	1209	4015-M3.5x8	*	9	80-T15
"SCLCR/L	16~2009	4015-M3.5x9		•	80-T15
-SCLCR/L	25~3209	4015-M3.5x12	AACN-2-0001	AAV-08-M3,5x8	80-T15
	_25~32_12	4020-M4.5x12	AACN-2-0003	AAV-10-M4.5x8	80-T20
	4012	1020-M4.5x16	AACN-2-0003	AAV-07-M4.5x13	80-T20
E CCI CDA	06	4008-M2.5x6	1		80-T08
ESCLCR/L	09	4015-M3.5x9	1.4	1.6	80-T15

MHOOPMALLING

Державки для внутреннего точения

Державки для CN** пластин

: Доп. прижим								○:c.27		Едизм: м			
Серия	-	Обозначение	Agrancy	25200. L	DMIN	DCON	н	WF	LF	Пластин			
		A25R-PCLNR/L 12C	083	092	32	25	23	17	200				
		A32S-PCLNR/L 12C	084	093	40	32	30	22	250				
	•	A40T-PCLNR/L 12C	085	094	50	40	37.5	27	300				
		A50U - PCLNR/L 12C	086	095	63	50	47	35	350	CNIA			
		5255 - PCLNR/L 12C	062	074	32	25	23	17	250	CN120			
	х	S32T-PCLNR/L 12C	063	075	40	32	30	22	300				
	Х	S40U-PCLNR/L12C	064	076	50	40	37.5	27	350				
		S50V-PCLNR/L 12C	065	077	63	50	47	35	400				
PCLNR/L		A32S - PCLNR/L 16C	087	096	40	32	30	22	250				
(Рычаг 95°)		A40T - PCLNR/L 16C	088	097	50	40	37.5	27	300				
		A50U - PCLNR/L 16C	089	098	63	50	47	35	350	CN1600			
		S32T-PCLNR/L 16C	066	078	40	32	30	22	300				
	X	S40U - PCLNR/L 16C	067	079	50	40	37.5	27	350				
		S50V - PCLNR/L 16C	068	080	63	50	47	35	400				
		A40T - PCLNR/L 19C	090	099	50	40	37.5	27	300				
	•	A50U - PCLNR/L 19C	091	100	63	50	47	35	350	CNIIO			
	X	S40U - PCLNR/L 19C	069	081	50	40	37.5	27	350	CN19			
	^	S50V-PCLNR/L19C	070	082	63	50	47	35	400				
		S25S-TCLNR/L 12	002	010	32	25	23	17	250				
	X	S32T-TCLNR/L 12	003	011	40	32	30	22	300	CN12			
	^	S40U -TCLNR/L 12	004	012	50	40	37.5	27	350	CIVIZ			
"-TCLNR/L (Прижим сверху 95°		S50V-TCLNR/L12	005	013	63	50	47	35	400				
(прижим сверху 95.)		S32T-TCLNR/L 16	006	014	40	32	30	22	300				
	X	S40U -TCLNR/L 16	007	015	50	40	37.5	27	350	CN160			
		550V - TCLNR/L 16	008	016	63	50	47	35	400				

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Пружина	Кольцо	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
	2512C	APL-02	ALV-08-M8x16	ACK-05	4015-M4x11		-	AACN-3-0001	4	AAY-02	AAL-03-3
DCI NO.	32~5012C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11		-	AACN-3-0001	э	AAY-02	AAL-03-3
PCLNR/L	16C	APL-04	ALV-04-M8x22	ACK-09	AAV-05-M6x15	*	12.	AACN-3-0002	Q.	AAY-03	AAL-03-3
	19C	APL-05	ALV-05-M10x27	ACK-09	AAV-05-M6x15		-	AACN-3-0003	9	AAY-04	AAL-05-4
	2512	*	*	ATK-02	AKV-30-M6x22	ABPL-01	AS-01	AACN-3-0001	AAV-13-M5x8	-6-	AAL-03-3
TCLNR/L	32~5012	-	+	ATK-02	AKV-30-M6x22	ABPL-01	AS-01	AACN-3-0001	AAV-02-M5x12	-	AAL-03-3
	16	-		ATK-04	AKV-19-M7x25	ABPL-02		AACN-3-0002	AAV-05-M6x15		AAL-05-4

Державки для DC** пластин

									[○]:c.	55	Ед изм.: мм
Сери	0		Обозначение	Agricing	25200 L	DMIN	DCON	н	WF	LF	Пластина
			A10H-SDQCR/L07	351	368	13	10	9	7	100	
			A12H-SDQCR/L 07	352	369	16	12	11	9	100	
		•	A16M - SDQCR/L 07	353	370	20	16	14.8	11	150	
			A20P - SDQCR/L 07	354	371	25	20	18.3	13	170	DC0703
			S10K - SDQCR/L 07	355	372	13	10	9	7	125	DC0702
		x	S12K-SDQCR/L 07	356	373	16	12	11	9	125	
		^	S16P - SDQCR/L 07	357	374	20	16	14.8	11	170	
	_	S20R-SDQCR/L 07	358	375	25	20	18.3	13	200		
1015	SDQCR/L (Винт 107.5°)	_	A16M - SDQCR/L 11	359	376	20	16	14.8	- 11	150	
	(DVINI 1075)		A20P - SDQCR/L 11	360	377	25	20	18.3	13	170	
		•	A25R-SDQCR/L11	361	378	32	25	23	17	200	
			A32S-SDQCR/L11	362	379	40	32	30	22	250	
			S16P-SDQCR/L11	363	380	20	16	14.8	11	170	DC11T3
			S20R - SDQCR/L 11	364	381	25	20	18.3	13	200	
		X	S25S - SDQCR/L 11	365	382	32	25	23	17	250	
			S32T-SDQCR/L11	366	383	40	32	30	22	300	
			S40U - SDQCR/L 11	367	384	50	40	37.5	27	350	

▶ Далее

Серия	Размер	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
	07	4008-M2.5x6	9	18	80-T08
	1611	4015-M3.5x9	+	9	80-T15
SDQCR/L	2011	4015-M3.5x11	- R		80-T15
	2511	4015-M3.5x12	AADN-2-0001	AAV-08-M3.5x8	80-T15
	3211	4015-M3.5x14	AADN-2-0001	AAV-06-M3.5x11	80-T15

Державки для DC** пластин

								⊚:c.	Едизм: ми	
Серия	-	Обозначение	Антину В	25200. L	DMIN	DCON	н	WF	LF	Пластина
		A10H - SDUCR/L 07	232	241	13	10	9	8	100	
		A12H - SDUCR/L 07	233	242	16	12	11	9	100	
	•	A16M - SDUCR/L 07	234	243	20	16	14.8	11	150	
		A20P - SDUCR/L 07	235	244	25	20	18.3	13	170	DC0703
		S10K - SDUCR/L 07	202	217	13	10	9	8	125	DC0702
	V	S12K-SDUCR/L07	203	218	16	12	11	9	125	
	X	S16P - SDUCR/L 07	206	221	20	16	14.8	11	170	
		S20R - SDUCR/L 07	207	222	25	20	18.3	13	200	
SDUCR/L		A16M - SDUCR/L 11	236	245	20	16	14.8	11	150	
(Винт 93°)		A20P - SDUCR/L 11	237	246	25	20	18.3	13	170	
	•	A25R - SDUCR/L 11	238	247	32	25	23	17	200	
		A32S - SDUCR/L 11	239	248	40	32	30	22	250	
		S16P - SDUCR/L11	209	224	20	16	14.8	-11	170	DC44TA
		S20R - SDUCR/L 11	211	226	25	20	18.3	13	200	DC11T3
		S25S - SDUCR/L 11	212	227	32	25	23	17	250	
	X	S32T - SDUCR/L 11	213	228	40	32	30	22	300	
		S40U - SDUCR/L 11	214	229	50	40	37.5	27	350	
		S50V - SDUCR/L 11	215	230	63	50	47	35	400	
	1	E10M - SDUCR/L 07	329	333	13	10	9	8	150	Deames
ESDUCR/L	•	E12Q-SDUCR/L 07	330	334	16	12	11	9	180	DC0702
(Винт 93°, Твердый стлав)		E16R - SDUCR/L 11	331	335	20	16	14.8	11	200	Desarra
	•	E20S - SDUCR/L 11	332	336	23	20	18.3	12	250	DC11T3

Серия	Paawep	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
	07	4008-M2.5x6	4	4.5	80-T08
	1611	4015-M3.5x9	-	-	80-T15
SDUCR/L	2011	4015-M3.5x11			80-T15
	25_11	4015-M3.5x12	AADN-2-0001	AAV-08-M3.5x8	80-T15
	3211	4015-M3.5x14	AADN-2-0001	AAV-06-M3.5x11	80-T15
CDUCD#	07	4008-M2.5x6	1		80-T08
E.,SDUCR/L	-11	4015-M3.5x9	0	-	80-T15

Державки для DN** пластин

								⊚:c	33	Ед, изм.: мм
Серия		Обозначение	Артинун R	25200 L	DMIN	DCON	н	WF	l,F	Пластина
		A32S - PDQNR/L 1504	385		40	32	30	22	250	
	•	A40T - PDQNR/L 1504	386	-	50	40	37.5	27	300	1100
		S32T - PDQNR/L 1504	387	÷	40	32	30	22	300	DN1504
	X	S40U - PDQNR/L 1504	388	9	50	40	37.5	27	350	
		S50V - PDQNR/L 1504	389		63	50	47	35	400	
(П 5 (Рычаг 107.5°)		A32S - PDQNR/L 15	390	396	40	32	30	22	250	
The final (075)		A40T - PDQNR/L 15	391	397	50	40	37.5	27	300	
		A50U - PDQNR/L 15	392	398	63	50	47	35	350	DNISCO
		S32T - PDQNR/L 15	393	399	40	32	30	22	300	DN1506
	X	S40U-PDQNR/L 15	394	400	50	40	37.5	27	350	
		S50V - PDQNR/L 15	395	401	63	50	47	35	400	
12 S. C. C. C.		S25S - TDQNR/L 15	402	406	32	25	23	17	250	
TDQNR/L	X	S32T-TDQNR/L 15	403	407	40	32	30	22	300	DN1506
01.5° (Прижим сверху 107.5°)		S40U-TDQNR/L 15	404	408	50	40	37.5	27	350	
		S50V - TDQNR/L 15	405	409	63	50	47	35	400	
		A32S-PDUNR/L 15	116	122	40	32	30	22	250	
	•	A40T - PDUNR/L 15	117	123	50	40	37.5	27	300	
P		A50U - PDUNR/L 15	118	124	63	50	47	35	350	
8 ³ PDUNR/L (Рычаг 93°)		S25S - PDUNR/L 15	103	109	32	25	23	19	250	DN1506
(Filmai 93)	V	S32T - PDUNR/L 15	104	110	40	32	30	22	300	
	X	S40U - PDUNR/L 15	105	111	50	40	37.5	27	350	
		S50V - PDUNR/L 15	106	112	63	50	47	35	400	
ALE JOSEPH CO.		S25S - TDUNR/L 15	019	025	34	25	23	17	250	10
TDUNR/L	v	S32T - TDUNR/L 15	020	026	40	32	30	22	300	DNISTOS
(Прижим сверху 93°)	X	S40U - TDUNR/L 15	021	027	50	40	37.5	27	350	DN1506
		S50V - TDUNR/L 15	022	028	63	50	47	35	400	
	-			_			diam'r.			

Серия	Размер	Рычаг	Винт рычага	Прижим	Винг прижима	Шайба	Кольцо	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
DOONEA.	15	APL-03	ALV-03-M8x19	*	+	4	1	AADN-3-0001	- 199	AAY-02	AAL-03-3
PDQNR/L	1504	APL-03	ALV-03-M8x19	*	19	~		AADN-2-0003	(4)	AAY-02	AAL-03-3
TOONID/I	2515			ATK-02	AKV-30-M6x22	ABPL-01	3.3	AADN-3-0001	AAV-13-M5x8	-	AAL-03-3
TDQNR/L	32~5015	4		ATK-02	AKV-30-M6x22	ABPL-01	AS-01	AADN-3-0001	AAV-02-M5x12	+	AAL-03-3
DOLINDA.	2515	APL-03	ALV-08-M8x16				120	AADN-3-0001		AAY-02	AAL-03-3
PDUNR/L	32~5015	APL-03	ALV-03-M8x19	-	+	-	(4)	AADN-3-0001	(-)	AAY-02	AAL-03-3
TOUNDA	2515	*	- X	ATK-02	AKV-30-M6x22	ABPL-01	AS-01	AADN-3-0001	AAV-13-M5x8	- 4	AAL-03-3
TDUNR/L	32~5015	*		ATK-02	AKV-30-M6x22	ABPL-01	AS-01	AADN-3-0001	AAV-02-M5x12		AAL-03-3

Державки для SN** пластин

*'С':Доп. прижим									⊚:c.	38	Едизм: мм
Сері	nsi.	-	Обозначение	Артину. R	n 25200 L	DMIN	DCON	Н	WF	LF	Пластина
		v	S25S - PSKNR/L 12C	410	412	32	25	23	17	250	Chianna
	PSKNR/L	×	S32T - PSKNR/L 12C	411	413	40	32	30	22	300	SN1204
18,	(Рычаг 7 5°)										

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Подкладная пластина	Втулка	Ключ
DCVND/I	2512C	APL-02	ALV-08-M8x16	ACK-05	Y4015-M4x11	AASN-3-0004	AAY-02	AAL-03-3
PSKNR/L	3212C	APL-02	ALV-03-M8x19	ACK-05	Y4015-M4x11	AASN-3-0004	AAY-02	AAL-03-3

7/GTURN

Державки для внутреннего точения

Державки для TC** пластин

									[○]:c.	59	Ед изм: мм
G	ерия		Обозначение	Aprimiy R	• 15200 L	DMIN	DCON	н	WF	LF	Пластина
			S12K-STFCR/L 11	253	264	17	12	11	9	125	
		X	S16P - STFCR/L 11	254	265	20	16	14.8	11	170	TC1102
			S20R - STFCR/L 11	255	266	25	20	18.3	13	200	
	STFCR/L		S16P - STFCR/L 16	256	267	20	16	14.8	11	170	TC16T3
\$	(Винт 90°)		S20R - STFCR/L 16	257	268	25	20	18.3	13	200	
7		X	S25S-STFCR/L 16	258	269	32	25	23	17	250	
			S32T - STFCR/L 16	259	270	40	32	30	22	300	
			S40U-STFCR/L 16			50	40	37.5	27	350	
			S12K - STUCR/L 11	273	283	17	12	11	9	125	
		X	S16P - STUCR/L 11	274	284	20	16	14.8	11	170	TC1102
			S20R - STUCR/L 11	275	285	25	20	18.3	13	200	1
	STUCR/L		S16P - STUCR/L 16	276	286	20	16	14.8	11	170	
Si - O	(Винт 93°)		S20R - STUCR/L 16	277	287	25	20	18.3	13	200	
-		X	S25S - STUCR/L 16	278	288	32	25	23	17	250	TC16T3
			S32T - STUCR/L 16	279	289	40	32	30	22	300	
			S40U - STUCR/L 16	280	290	50	40	37.5	27	350	

Серия	Размер	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
	12~2011	4008-M2.5x6		* 1	80-T08
	1616	4015-M3.5x9	1.5	151	80-T15
STFCR/L	2016	4015-M3.5x11	×	8	80-T15
	2516	4015-M3.5x14	AATN-2-0001	AAV-08-M3.5x8	80-T15
	32~4016	4015-M3.5x14	AATN-2-0001	AAV-06-M3.5x11	80-T15
	11	4008-M2.5x6	-	(*)	80-T08
	1616	4015-M3.5x9	N.		80-T15
.STUCR/L	2016	4015-M3.5x11	2	18	80-T15
	2516	4015-M3.5x14	AATN-2-0001	AAV-08-M3.5x8	80-T15
	32~4016	4015-M3.5x14	AATN-2-0001	AAV-06-M3.5x11	80-T15

YGTURN

Державки для внутреннего точения

Державки для TN** пластин

								⊚:c.	42	Едизм: мм
Серия		Обозначение	Артику В	n 25200 L	DMIN	DCON	н	WF	LF	Пластина
		S20R - MTFNR/L 16	414	421	25	20	18.3	14	200	
	х	S25S - MTFNR/L 16	415	422	32	25	23	17	250	TAUCOA
"-MTFNR/L	^	S32T - MTFNR/L 16	416	423	40	32	30	22	300	TN1604
мижидП+тфитШ)		S40U - MTFNR/L 16	417	424	50	40	37.5	27	350	
сверху 90°)	7	S32T - MTFNR/L 22	418	425	40	32	30	22	300	TN2204
	X	S40U - MTFNR/L 22	419	426	50	40	37.5	27	350	
		S50V - MTFNR/L 22	420	427	63	50	47	35	400	
		S20R-MTUNR/L16	428	433	25	20	18.3	13	200	
MTUNR/L		S25S - MTUNR/L 16	429	434	32	25	23	17	250	
25 — (Штифт+Прижим	X	S32T - MTUNR/L 16	430	435	40	32	30	22	300	TN1604
сверху 93°)		S40U - MTUNR/L 16	431	436	50	40	37.5	27	350	
		S50V - MTUNR/L 16	432	437	63	50	47	35	400	
		- Bri								▶ Дале

Серия	Размер	Рычаг	Вият рычага	Прижим	Винт прижима	Шайба	Кольцо	Штифт	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
	2016	÷	- 8	AMK-02	AKV-17-M5x15	12		APM-03	- 4	- 4	195	AAL-03-3
MTFNR/L	2516		2	AMK-04	AKV-30-M6x22	ABPL-01	AS-01	APM-14	AATN-2-0002	+	~	AAL-03-3
	32~4016			AMK-04	AKV-30-M6x22	ABPL-01	AS-01	APM-01	AATN-2-0002	+	181	AAL-03-3
	22	*		AMK-04	AKV-30-M6x22	ABPL-01	AS-01	APM-02	AATN-3-0015	*		AAL-03-3
	2016	€.	8.	AMK-02	AKV-17-M5x15	-	10.0	APM-03		9	7	AAL-03-3
MTUNR/L	.2516	*		AMK-04	AKV-30-M6x22	ABPL-01	AS-01	APM-14	AATN-2-0002	*		AAL-03-3
	32~5016	-	(=)	AMK-04	AKV-30-M6x22	ABPL-01	AS-01	APM-01	AATN-2-0002	0.0	18	AAL-03-3

Державки для TN** пластин

*'С' : Доп. прижим								⊚:c.	42	Ед изм: мм
Серия		Обозначение	Артину. R	25200 L	DMIN	DCON	н	WF	LF	Пластина
		S16P - PTUNR/L 16	438	446	20	16	14.8	11	170	
		S20R - PTUNR/L 16	439	447	25	20	18.3	13	200	
	X	S25S - PTUNR/L 16C	440	448	32	25	23	17	250	TN1604
PTUNR/L		S32T - PTUNR/L 16C	441	449	40	32	30	22	300	
% (Рычаг 93°)		S40U - PTUNR/L 16C	442	450	50	40	37.5	27	350	
		S32T - PTUNR/L 22C	443	451	40	32	30	22	300	
	X	S40U - PTUNR/L 22C	444	452	50	40	37.5	27	350	TN2204
		S50V - PTUNR/L 22C	445	453	63	50	47	35	400	
	.,	S25S - TTUNR/L 16	035	041	32	25	23	17	250	277.14
	X	S32T - TTUNR/L 16	036	042	40	32	30	22	300	TN1604
TTUNR/L	_	S25S-TTUNR/L 22	037	043	32	25	23	17	250	
93° (Прижим сверху 93°)		S32T-TTUNR/L 22	038	044	40	32	30	22	300	T110004
	X	S40U-TTUNR/L 22	039	045	50	40	37.5	27	350	TN2204
		S50V - TTUNR/L 22	040	046	63	50	47	35	400	

Серил	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Штифт	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
	1616	APL-08	ALV-07-M6x13	14							AAY-07	AAL-02-2.5
DTUND#	2016	APL-01	ALV-01-M6x14	9		130	4	÷	AATN-3-0025		AAY-01	AAL-02-2.5
PTUNR/L	_16C	APL-01	ALV-02-M6x17	ACK-05	4015-M4x11		- 7		AATN-3-0025		AAY-01	AAL-02-25
	22C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11				AATN-3-0015		AAY-02	AAL-03-3
TTUND#	_16	340		ATK-01	AKV-01-M5x22	ABPL-01	1-20		AATN-2-0002	AAV-03-M5x12	- 12	AAL-03-3
TTUNR/L	22		+	ATK-02	AKV-30-M6x22	ABPL-01	AS-01	÷	AATN-3-0015	AAV-02-M5x12		AAL-03-3

МНФОРМАЦИЯ

Державки для внутреннего точения

Державки для VB** пластин

Серия

Обозначение A20Q - SVQBR/L 16

A25S - SVQBR/L 16

A32S-SVQBR/L16

S25S-SVQBR/L 16

S32T-SVQBR/L 16

S40U - SVOBR/L 16

S25S - SVJBR/L 16

S32T - SVJBR/L 16

Едизм: мм	60	[O]:C.		
Пластина	LF	WF	Н	N
	180	20	18.3	
	250	17	23	
VD1604	250	22	30	
VB1604	250	17	23	
	300	22	30	
	350	27	37.5	
	250	17	23	
VB1604	300	22	30	
VB 1004				_

		/		
	1	5/	-	
	2	ŝ		
	-0	-		

(Винт 93°)

..-SVJBR/L

..-SVQBR/L (Винт 107.5°)

> A20Q-SVUBR/L16 18.3 A32S - SVUBR/L 16 **VB1604** 5255 - SVUBR/L 16 S32T - SVUBR/L 16 540U - SVUBR/L 16 37.5

DMIN

00	-
1	7
0)
1/-	
	9

**	2AORK/I	
	(Винт 93°)	

Серия	Paswep	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
	2016	4015-M3.5x11	+	-	80-T15
SVQBR/L	A2516	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15
SVQBK/L	S2516	4015-M3.5x14	AAVN-2-0002	AAV-08-M3.5x8	80-T15
	32~4016	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15
SVJBR/L	16	4015-M3.5x12	AAVN-2-0002	AAV-08-M3.5x8	80-T15
CMIDDA	2016	4015-M3.5x11			80-T15
SVUBR/L	25~4016	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15

7/GTURN

Державки для внутреннего точения

Державки для VC** пластин

									[]:c.	61	ЕД, ИЗМ.: ММ
	Серия		Обозначение	Артику П	n 25200 L	DMIN	DCON	н	WF	LF	Пластина
100			S25S - SVQCR/L 16	468	471	32	25	23	17	250	
a	SVQCR/L	x	S32T - SVQCR/L 16	469	472	40	32	30	22	300	VC1604
1015	(Винт 107.5°)	^	S40U - SVQCR/L 16	470	473	50	40	37.5	27	350	VC1604
	_	•	A25R - SVUCR/L 16	- 2-	4	32	25	23	19	200	
	SVUCR/L		S25S-SVUCR/L 16	311	316	32	25	23	19	250	VC1604
9 9 P	(Винт 93°)	X	S32T-SVUCR/L 16	312	317	40	32	30	22	300	VC1004
			S40U - SVUCR/L 16	313	318	50	40	37.5	27	350	

Серия	Размер	Винт	Подкладная пластина	Винтовая подкладная пластина	Ключ
CVOCDA	2516	4015-M3.5x14	AAVN-2-0002	AAV-08-M3.5x8	80-T15
SVQCR/L	32~4016	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15
SVUCR/L	16	4015-M3.5x14	AAVN-2-0002	AAV-06-M3.5x11	80-T15

Державки для VN** пластин

								②:c.	47	Едизм: мм
Серия		Обозначение	Артику R	25200 L	DMIN	DCON	н	WF	LF	Пластина
		S25S-TVUNR/L 16	474	477	36	25	23	20	250	
TVUNR/L	~	S32T - TVUNR/L 16	475	478	40	32	30	22	300	VN1604
(Прижим сверку 93°)	X	S40U - TVUNR/L 16	476	479	50	40	37.5	27	350	VIV1604

Серіля	Размер	Прижим	Винт прижима	Пружина	Подкладная пластина	Винтовая подкладная пластина	Ключ
TVUNR/L	16	ATK-01	AKV-01-M5x22	ABPL-01	AAVN-2-0002	AAV-04-M5x12	AAL-03-3

Державки для WN** пластин

: Доп. прижим								⊚:c.	49	Ед.изм.: м
Серия		Обозначение	Aprimy	25200 L	DMIN	DCON	н	WF	I.F	Пластин
		S16P-MWLNR/L 06	480	486	20	16	14.8	11	170	
A	X	S20R - MWLNR/L 06	481	487	25	20	18.3	13	200	WN060
MWLNR/L		S25S - MWLNR/L 06	482	488	32	25	23	17	250	
(Штифт + Прижим сверху 95°)		S25S - MWLNR/L 08	483	489	32	25	23	17	250	
	X	S32T - MWLNR/L 08	484	490	40	32	30	22	300	WN080
		S40U - MWLNR/L 08	485	491	50	40	37.5	27	350	
		A20P - PWLNR/L 06	139	146	25	20	18.3	13	170	
		A25R - PWLNR/L 06	140	147	32	25	23	17	200	
		A32S - PWLNR/L 06	141	148	40	32	30	22	250	WN066
		S20R-PWLNR/L06	125	132	25	20	18.3	13	200	WINUO
	X	S25S - PWLNR/L 06	126	133	32	25	23	17	250	
		S32T - PWLNR/L 06	127	134	40	32	30	22	300	
PWLNR/L		A25R - PWLNR/L 08C	142	149	32	25	23	17	200	
(Рычаг 95°)		A32S - PWLNR/L 08C	143	150	40	32	30	22	250	
	•	A40T - PWLNR/L 08C	144	151	50	40	37.5	27	300	
		A50U - PWLNR/L 08C	145	152	63	50	47	35	350	WN080
		S25S - PWLNR/L 08C	128	135	32	25	23	17	250	VVINUO
	V	S32T - PWLNR/L 08C	129	136	40	32	30	22	300	
	X	S40U - PWLNR/L 08C	130	137	50	40	37.5	27	350	
		S50V - PWLNR/L 08C	131	138	63	50	47	35	400	

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Штифт	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
	1606		19	AMK-01	AKV-17-M5x15	N	41	APM-09	100	The T	14.	- 61
	2006	-	-	AMK-01	AKV-04-M5x17	~	*	APM-10	+	- 8	(4)	9
MWLNR/L	.2506			AMK-01	AKV-04-M5x17	- %	19-7	APM-08				-
	.2508	-	(8)	AMK-05	AKV-27-M6x20	ABPL-01	AS-01	APM-04	AAWN-3-0001			AAL-03-3
	32~4008	-	-	AMK-05	AKV-03-M6x22	ABPL-01	AS-01	APM-02	AAWN-3-0001			AAL-03-3
	2006	APL-01	ALV-01-M6x14	+	-	-	~	2	AAWN-SW317	ş	AAY-01	AAL-02-2.5
PWLNR/L	25~3206	APL-01	ALV-02-M6x17					- 9	AAWN-SW317		AAY-01	AAL-02-2.5
	08C	APL-02	ALV-03-M8x19	ACK-05	4015-M4x11			-	AAWN-3-0001	19	AAY-02	AAL-03-3

MHOOPMALING

Державки для внутреннего точения

Державки для WN** пластин

								(○):c.	49	ET NOW: WW
Серия		Обозначение	Артику R	n 25200 L	DMIN	DCON	Н	WF	LF	Пластина
	X	S25S-TWLNR/L06	047	1091	32	25	23	17	250	WN0604
	^	S32T-TWLNR/L 06	048	1093	40	32	30	22	300	WIN0004
		A40T - TWLNR/L 08	(*)	-	50	40	37.5	27	300	
TWLNR/L	•	A50U - TWLNR/L 08	+	+	63	50	47	35	350	
ф (Прижим сверху 95°)		S25S -TWLNR/L 08	049	055	32	25	23	17	250	WALODOA
	х	S32T-TWLNR/L08	050	056	40	32	30	22	300	WN0804
	^	S40U-TWLNR/L08	051	057	50	40	37.5	27	350	
		S50V - TWLNR/L 08	052	058	63	50	47	35	400	

Серия	Размер	Рычаг	Винт рычага	Прижим	Винт прижима	Шайба	Кольцо	Штифт	Подкладная пластина	Винтовая подкладная пластина	Втулка	Ключ
	06		. 8	ATK-01	AKV-01-M5x22	ABPL-01	11811	(6)	AAWN-SW317	AAV-01-M3x10	140	AAL-03-3
.TWLNR/L	2508	-		ATK-02	AKV-30-M6x22	ABPL-01	AS-01	8	AAWN-3-0001	AAV-13-M5x8	4	AAL-03-3
	32~5008		+	ATK-02	AKV-30-M6x22	ABPL-01	AS-01	TeT	AAWN-3-0001	AAV-02-M5x12	-	AAL-03-3

Антивибрационные оправки

Антивибрационные оправки

		DCON	DMIN			Разме	ры (мм)			Компле	ктующие
Обозначение	Артикул		No.	DCONMS	DCONWS	OAL	OHN	онх	CNT	Винт	Ключ
YGAV-D16-156-7D-H	16000001	16	20	16	16	156	55	92	G 1/8	2525	
YGAV-D16-204-10D-H	16000002	16	20	16	16	204	96	140	G 1/8	M3X10	*** ** * *
YGAV-D20-200-7D-H	16000003	20	25	20	20	200	70	120	G 1/4	M3X10	AAL-02-2.5
YGAV-D20-260-10D-H	16000004	20	25	20	20	260	120	180	G 1/4	WISKIU	
YGAV-D25-255-7D-H	16000005	25	32	25	25	255	88	158	G 1/4	2503	AAL-03-3
YGAV-D25-330-10D-H	16000006	25	32	25	25	330	155	230	G 1/4	M4X12	AAL-03-3
YGAV-D32-320-7D-H	16000007	32	40	32	32	320	100	192	G 3/8	2504	441.05.4
YGAV-D32-416-10D-H	16000008	32	40	32	32	416	192	288	G 3/8	M5X16	AAL-05-4
YGAV-D40-408-7D-H	16000009	40	50	40	40	408	128	248	G 1/2		
YGAV-D40-528-10D-H	16000010	40	50	40	40	528	248	368	G 1/2		
YGAV-D50-519-7D-H	16000011	40	63	50	40	519	168	318	G 1/2	2505	AAL-07-5
YGAV-D50-669-10D-H	16000012	40	63	50	40	669	318	468	G 1/2	M6X16 (27100220)	(27100201
YGAV-D60-628-7D-H	16000013	40	80	60	40	628	208	388	G 3/4		
YGAV-D60-808-10D-H	16000014	40	80	60	40	808	388	568	G 3/4		

Картридж для антивибрационной оправки

Под пластины DC..Т0702.../DC..Т11Т3...

O: c. 48

YGTURN

EAL VENC: MIN

	Артикул _	Размеры (мм)			Пластина	Зажимной винт	Подкладная пластина	Ключ			
Обозначение	Артикул	DCON	LF	WF	D min	0				på.	
YGAV-A16 SDUCR 07 YGAV-A16 SDUCL 07		16	20	11	20	DCT 0702	4008-M2,5×6			80-T08	
YGAV-A20 SDUCR 11 YGAV-A20 SDUCL 11		20	20	13	25		4015-M3.5×11	-			
YGAV-A25 SDUCR 11 YGAV-A25 SDUCL 11	24 24 24 24	25	23	17	32	06 7447	4015-M3.5×12		AAV-08- M3.5×8	20.745	
YGAV-A32 SDUCR 11 YGAV-A32 SDUCL 11		32	32	22	40	DCT 11T3	4015 M2 5:41	AADN-2-0001	AAV-06-	80-T15	
YGAV-A40 SDUCR 11 YGAV-A40 SDUCL 11	10077000	40	32	27	50	ROT	4015-M3.5×11	1	M3.5×11		

7/GTURN

Картридж для антивибрационной оправки

Под пластины СС..Т0602.../СС..Т09Т3.../СС..Т1204...

KAPR=95°

O: c. 48

Ед, изм.: мм

			Разме	ры (мм)		Пластина	Зажимной тнив	Подкладная пластина	Винт подклад. пластины	Ключ
Обозначение	Артикул	DCON	LF	WF	D min	2		0		Jan San
YGAV-A16 SCLCR 06 YGAV-A16 SCLCL 06	16000097 16000098	16	20	11	20	CCT 0602	4008-M2.5×6			80-T08
YGAV-A20 SCLCR 09 YGAV-A20 SCLCL 09	16000099 16000100	20	20	13	25		4015-M3.5×9			
YGAV-A25 SCLCR 09 YGAV-A25 SCLCL 09	16000101 16000102	25	23	17	32	CCT 09T3		Land I	AAV-08-	80-T15
YGAV-A32 SCLCR 09 YGAV-A32 SCLCL 09	16000103 16000104	32	32	22	40	-	4015-M3.5×12	AACN-2-0001	M3.5×8	
/GAV-A40 SCLCR 12 /GAV-A40 SCLCL 12	16000105 16000110	40	32	27	50	CCT 1204	1020-M4.5×16	AACN-2-0003	AAV-07- M4.5×13	80-T20

MHOOPMALM

Картридж для антивибрационной оправки

Под пластины VC..Т1103.../VC..Т1604...

O: c. 48

EDL VEML: MIM

			Разме	ры (мм)		Пластина	Зажимной винт	Подкладная пластина	Винт подклад. пластины	Ключ
Обозначение	Артикул	DCON	LF	WF	D min	2				ps.
YGAV-A20 SVUCR 11 YGAV-A20 SVUCL 11	16000198 16000199	20	20	15	27	V6 T4403				
YGAV-A25 SVUCR 11 YGAV-A25 SVUCL 11	16000200 16000201	25	23	17	32	VCT 1103	4008-M2.5×6			80-T08
YGAV-A32 SVUCR 16 YGAV-A32 SVUCL 16	16000202 16000203	32	32	22	40				AAV-06-	
YGAV-A40 SVUCR 16 YGAV-A40 SVUCL 16	16000204 16000205	40	32	27	50	VCT 1604	4015-M3.5×14	AAVN-2-0002	M3.5×11	80-T15

BROTECH

Картридж для антивибрационной оправки

Под пластины DNMG1104.../DNMG1506...

O: c. 48

Ед изм: мм

Облакачение		Размеры (мм)				Пластина	Прижим	Зажим. винт	Подклад. пластина	Винт подклад. пластины	Кольцо	Шайба	Ключ
	Артинул	DCON	LF	WF	D mir	•		0	(0)	THE REAL PROPERTY.	50	0	1
YGAV-A32 TDNUR 11 YGAV-A32 TDUNL 11	16000400 16000401	32	32	22	40	DNM 1104	ATK-01	AKV-01- M5×22	AADN-2- 0001	AAV-04- M5×12		ABPL-01	AAL-03-3
YGAV-A40 TDNUR 15 YGAV-A40 TDUNL 15	16000402 16000404	40	38	27	50	DNM 1506	ATK-02	AKV-30- M6×22	AADN-3- 0001	AAV-02- M5×12	AS-01		

7/GTURN

Картридж для антивибрационной оправки

Под пластины DNMG1104.../DNMG1506...

KAPR=95°

O: c. 48

Ед изм: мм

Обозначение		Размеры (мм)				Пластина	Прижим	Зажим. винт	Подклад. пластина	подклад.	Кольцо	Шайба	Ключ
	Артикул	DCON	LF	WF	D min	٠		and o		MINING B	0	0	1
YGAV-A32 TCLNR 12 YGAV-A32 TCLNL 12	16000500 16000501	32	32	22	40	CNM 1204	ATK-02	AKV-30-	AACN-3-	AAV-02-	AS-01	ABPL-01	
YGAV-A40 TCLNR 12 YGAV-A40 TCLNL 12	16000502 16000504	40	38	27	50			M6×22	0001	M5×12			AAL-03-

Картридж для антивибрационной оправки

Картридж для калибрования антивибрационной оправки

Обозначения	Артикул		Размер	ы (мм)		Державка
		DCONWS	DCONMS	ĹF	н	
/GAV-16-25	16000994	28	25	15	22	YGAV-D16/20/25
/GAV-32-60	16000995	53	40	20	35	YGAV-D32/40/50/50

NanoCut

Токарные резцы для обработки малых диаметров

Обзор

В настоящее время, по мере роста спроса на мелкие детали (объектив камеры, детали мобильных телефонов) и медицинские инструменты, растет спрос на инструмент малого диаметра, для высокоточной обработки.

Операции

- Токарная обработка деталей малого диаметра
- Внутреннее точение (растачивание), обработка канавок

Особенности

- Минимальный диаметр (растачивание и профилирование): Ø 1 мм
- Внутренняя подача СОЖ для продления срока службы инструмента
- Безопасное соединение: штифт + наклонное позиционирование

высокую точность обработки.

9 геометрий под различные операции

Достоинства

- Высокая повторяемость
- Долгий срок службы

Преимущества

- Сокращает время простоя станка
- Более низкая стоимость обработки

УСВ12-Микрозернистый твердый сплав Р10-Р20 м20-м30 Субмикронный твердый сплав с высокой прочностью и износостойкостью обеспечивает

"/GNanoCut типоразмеры

ВО - Растачивание со стружколомом

* GS - Обработка канавки

Обработка торцевых канавок
 Внешняя

 Обработка радиусной GR-канавки

СН - Снятие фаски

* В разработке

TEXHINACKAR

Система кодирования - Расточной резец и оправка

"/ © Условия обработки

Размер	Ø 6 мм, R 0.2 мм (Ø .236", R .008")							
Обрабатываемый материал	SCM440 (HRc 20)							
Скорость резания	100 м/мин. (328 ft./min.)							
RPM	637 об./мин.							
Подача за оборот	0.1 мм/об. (.004 inch/rev.)							
Глубина расточки	Осевая: 10 мм (.390") Радиальная: 0.15 мм (.006"							
Охлаждение	Без охлаждения							
Операция	Растачивание							
Станок	Токарно-фрезерный станок							

Износ кромки (после 30 мин.)

Резцы

ВР – Растачивание и профилирование

: Стоковая позиция О: Позиция по доп. заказу

e e men	nemi	Обозначение	Артикул		Метр	ическа	A (mm)			1		Д	юймы		WE ON S	
KAPR	DCON		NCBP.	DMIN	LU	RE	CDX	WF	ОНХ	DMIN	W	RE	CDX	WF	ОНХ	YG812
		NCBP4R-10.04-005-YG812	04R1004005T	1	4	0.05	0.1	0.45	13	.039	.157	.002	.004	.018	.510	•
		NCBP4R-10.04-010-YG812	04R1004010T	1	4	0.1	0,1	0.45	13	.039	.157	.004	.004	.018	.512	•
		NCBP4R-10.06-005-YG812	04R1006005T	1	6	0.05	0.1	0.45	13	.039	.236	.002	.004	.018	.510	•
		NCBP4R-10.06-010-YG812	04R1006010T	1	6	0.1	0.1	0.45	13	.039	.236	.004	.004	.018	.512	•
		NCBP4R-17.06-005-YG812	04R1706005T	1.7	6	0.05	0.2	0.7	13	.067	.236	.002	.008	.028	.510	0
		NCBP4R-17.06-010-YG812	04R1706010T	1.7	6	0.1	0.2	0.7	13	.067	.236	.004	.008	.028	.512	•
		NCBP4R-17.09-005-YG812	04R1709005T	1.7	9	0.05	0.2	0.7	13	.067	.354	.002	.008	.028	.510	0
		NCBP4R-17.09-010-YG812	04R1709010T	1.7	9	0.1	0.2	0.7	13	.067	354	.004	.008	.028	.512	•
		NCBP4R-22,06-005-YG812	04R2206005T	2.2	6	0.05	0.2	0.95	13	.087	.236	.002	.008	.037	.510	0
		NCBP4R-22.06-010-YG812	04R2206010T	2.2	6	0.1	0.2	0.95	13	.087	.236	.004	.008	.037	.512	•
		NCBP4R-22.09-005-YG812	04R2209005T	2.2	9	0.05	0.2	0.95	13	.087	.354	.002	.008	.037	.510	0
		NCBP4R-22.09-010-YG812	04R2209010T	2.2	9	0.1	0.2	0.95	13	.087	.354	.004	.008	.037	.512	•
		NCBP4R-22.13-010-YG812	04R2213010T	2.2	13	0.1	0.2	0.95	18	.087	.512	.004	.008	.037	.709	•
	4 MM (.157")	NCBP4R-27.10-005-YG812	04R2710005T	2.7	10	0.05	0,2	1,2	13	.106	.394	.002	.008	.047	.512	0
		NCBP4R-27.10-015-YG812	04R2710015T	2.7	10	0.15	0.2	1,2	13	.106	394	.006	.008	.047	.512	•
		NCBP4R-27.15-005-YG812	04R2715005T	2.7	15	0.05	0.2	1.2	18	.106	.591	.002	.008	.047	.709	0
200		NCBP4R-27.15-015-YG812	04R2715015T	2.7	15	0.15	0.2	1.2	18	.106	.591	.006	.008	.047	.709	•
98°		NCBP4R-32.10-015-YG812	04R3210015T	3.2	10	0.15	0.2	1.45	13	.126	.394	.006	.008	.057	.512	
		NCBP4R-32.15-015-YG812	04R3215015T	3.2	15	0.15	0.2	1.45	18	.126	.591	.006	.008	.057	.709	•
		NCBP4R-32,20-005-YG812	04R3220005T	3.2	20	0.05	0.2	1.45	23	.126	.787	.002	.008	.057	.906	0
		NCBP4R-32,20-015-YG812	04R3220015T	3.2	20	0.15	0.2	1.45	23	.126	.787	.006	.008	.057	.906	•
		NCBP4R-42.10-015-YG812	04R4210015T	4.2	10	0.15	0,3	1.95	13	.165	394	.006	.012	.077	.512	
		NCBP4R-42.15-005-YG812	04R4215005T	4.2	15	0.05	0.3	1.95	18	.165	.591	.002	.012	.077	.709	0
		NCBP4R-42.15-015-YG812	04R4215015T	4.2	15	0.15	0.3	1.95	18	.165	591	.006	.012	.077	.709	
		NCBP4R-42.20-005-YG812	04R4220005T	4.2	20	0.05	0.3	1.95	23	.165	.787	.002	.012	.077	.906	0
		NCBP4R-42_20-015-YG812	04R4220015T	4.2	20	0.15	0.3	1.95	23	.165	.787	.006	.012	.077	.906	
		NCBP4R-42,25-005-YG812	04R4225005T	4,2	25	0.05	0.3	1.95	28	.165	.984	.002	.012	.077	1.102	0
		NCBP4R-42.25-015-YG812	04R4225015T	4.2	25	0.15	0.3	1.95	28	.165	.984	.006	.012	.077	1.102	•
		NCBP6R-62.15-020-YG812	06R6215020T	6.2	15	0.2	0.5	2.95	18	244	.591	.008	.020	.116	.709	•
		NCBP6R-62.20-020-YG812	06R6220020T	6.2	20	0.2	0.5	2.95	23	244	.787	.008	.020	.116	.906	•
	бим	NCBP6R-62.25-020-YG812	06R6225020T	6.2	25	0.2	0.5	2.95	28	.244	.984	.008	.020	.116	1.102	•
	(236")	NCBP6R-62,30-020-YG812	06R6230020T	6.2	30	0.2	0,5	2.95	33	244	1.181	.008	.020	.116	1.299	
		NCBP6R-62.35-020-YG812	06R6235020T	6.2	35	0.2	0.5	2.95	38	.244	1.378	.008	.020	.116	1.496	
		NCBP6R-62.40-020-YG812	06R6240020T	6.2	40	0.2	0.5	2.95	43	244	1.575	.008	.020	.116	1.693	

Оправки

	ОНХ	Размер резца (DCONws)	Обозначение	Артикул ZBR.,	DCONMS	OAL	Н	OAH
			NCHI-12.4	0400012	12	70	10	15.5
		4 MM (.157")	NCHI-16.4	0400016	16	75	14	17.5
Метрич.	14		NCHI-20.4	0400020	20	90	18	20
(MM)	14	100	NCHI-12.6	0600012	12	70	10	16.5
		6 MM (.236")	NCHI-16.6	0600016	16	75	14	18.5
		(220)	NCHI-20.6	0600020	20	90	18	22
			NCHI-0500.4i	0400500	.500	2.756	.421	.624
		4 MM (.157")	NCHI-0625.4i	0400625	.625	2.953	.546	.687
0		(10.7)	NCHI-0750.4i	0400750	.750	4.331	.671	.750
Дюймовая	.551	100	NCHI-0500.6i	0600500	.500	2,756	.421	.663
		6 MM (236")	NCHI-0625.6i	0600625	.625	2.953	.546	.726
		(230)	NCHI-0750.6i	0600750	.750	4.331	.671	.827

	Y	G812 СПЛАВ		Скорост	гь резания		Подача за оборот (Fn)				
ISO	VDI	Материал		/min.)	4.37.1.74.	t./min.)		n/rev.)		ch/rev.)	
			Min	Max	Min	Max	Min	Max	Min	Max	
	1~5	Нелегированная сталь	170	200	558	656	0.015	0.025	0.0006	0.0010	
P	6~9	Низколегированная сталь	95	160	312	525	0.015	0.025	0.0006	0.0010	
	10~11	Высоколегированная	85	95	279	312	0.015	0.025	0.0006	0.0010	
м	12~13	Ферритная и Мартенситная	105	140	344	459	0.015	0.025	0.0006	0.0010	
IVI	14	Аустенитная нержав. сталь	95	130	312	427	0.015	0.025	0.0006	0.0010	
ĸ-	15~16	Серый чугун	140	190	459	623	0.015	0.025	0.0006	0.0010	
N.	17~18	Высокопрочный чугун	140	190	459	623	0.015	0.025	0.0006	0.0010	
N	21-30	Цветные металлы (AI)		-	7.2	- 1		-	-	- (-)	
S	31-37	Суперсплавы и Титан	10	75	33	246	0.015	0.025	0.0006	0.0010	
Н	38~41	Высокотверд. материалы		2	114	- 12		-	-		

ОТРЕЗКА И ОБРАБОТКА КАНАВОК

Обзор державок Обзор пластин

Державки для точения канавок и отрезки

Державки для TD. пластин

:c. 115

Едизм.:мм

Обозначение	Артику: R	1 26100 L	cw	CDX	Н.	В	LF	WF	Пластина
YGR/L 1212-2-T15	001	018	2	15	12	12	100	12.3	
YGR/L 1616-2-T15	002	019	2	15	16	16	125	16.3	
YGR/L 2020-2-T9	003	020	2	9	20	20	125	20.3	TDO
YGR/L 2020-2-T15	004	021	2	15	20	20	125	20.3	TD.2
YGR/L 2020-2-T20	005	022	2	20	20	20	125	20.3	
YGR/L 2525-2-T17	006	023	2	17	25	25	150	25.3	
YGR/L 1212-3-T15	007	024	3	15	12	12	100	12.4	
YGR/L 1616-3-T15	008	025	3	15	16	16	125	16.4	
YGR/L 2020-3-T20	009	026	3	20	20	20	125	20.4	
YGR/L 2020-3-T30	010	027	3	30	20	20	125	20.4	TD2
YGR/L 2525-3-T9	011	028	3	9	25	25	150	25.4	TD.3
YGR/L 2525-3-T22	012	029	3	22	25	25	150	25.4	
YGR/L 2525-3-T25	013	030	3	25	25	25	150	25.4	
YGR/L 2525-3-T30	014	031	3	30	25	25	150	25.4	
YGR/L 2525-4-T22	015	032	4	22	25	25	150	25.4	TDA
YGR/L 2525-4-T30	016	033	4	30	25	25	150	25.4	TD.4
YGR/L 2525-5-T25	017	034	5	25	25	25	150	25.4	TD.5

Обозначение		Артикул R	n 26200 L	CW	CDX	H	В	LF	WF	Пластина
YGR/L 1212-3-T15-C		001	015	3	15	12	12	100	12.4	
YGR/L 1616-3-T15-C	•	002	016	3	15	16	16	125	16.4	
YGR/L 2020-3-T20-C	•	003	017	3	20	20	20	125	20.4	
YGR/L 2020-3-T25-C	•	004	018	3	25	20	20	125	20.4	
YGR/L 2020-3-T30-C		005	019	3	30	20	20	125	20.4	TD.3
YGR/L 2525-3-T22-C	•	006	020	3	22	25	25	150	25.4	
YGR/L 2525-3-T25-C	•	007	021	3	25	25	25	150	25.4	
YGR/L 2525-3-T30-C	•	008	022	3	30	25	25	150	25.4	
YGR/L 2525-3-T09-C	•	009	023	3	09	25	25	150	25.4	

Серия	Размер	Винт	Шайба	Ключ
web#	2.,	AKV-02-M6x22 (27100037)	ABPL-01 (27100089)	AAL-03-3 (27100199)
YGR/L	3/4/5	2004-M8x1x20 (27100223)		AAL-05-4 (27100200)
	Серия YGR/L	YGR/L2.,	YGR/L2., AKV-02-M6x22 (27100037)	YGR/L2., AKV-02-M6x22 (27100037) ABPL-01 (27100089)

ТОКАРНАЯ ОБРАБОТКА ТОК

ТОКАРНАЯ ОБРАБОТКА

ПИВИБ ОПРАВКИ

OTPESKA N OSPASOT

Державки для точения канавок и отрезки

Державки для TD. пластин с внутренним подводом СОЖ

____:c. 115

Едизм.:мм

Обозначение	•	Артику. R	л 26200 L	cw	CDX	н	В	LF	WF	Пластина
YGR/L 3232-3-T25-C	•	010	024	3	25	32	32	170	32.4	TOO
YGR/L 2525-4-T22-C	•	011	025	4	22	25	25	150	25.5	TD.3
YGR/L 2525-4-T25-C	•	012	026	4	25	25	25	150	25.5	
YGR/L 2525-4-T30-C	•	013	027	4	30	25	25	150	25.5	TD.4
YGR/L 2525-5-T25-C	•	014	028	5	25	25	25	150	25.5	TD.5

Серин	Размер	Винт	Шай6а	Ключ
ven.	2	AKV-02-M6x22 (27100037)	ABPL-01 (27100089)	AAL-03-3 (27100199)
YGR/L	3/4/5	2004M8x1x20 (27100223)	9	AAL-05-4 (27100200)

Державки (Swiss Lathe) для TD. пластин

: C. 115	Едизм.:мм
	Charles aleas

Обозначение		Артику R	/n 2611 L	cw	CDX	н	В	LF	WF	Гіластина
YGR/L 1212-2T12-S		0001	0005	2	12	12	12	125	12.2	TDO
YGR/L 1616-2T16-S		0002	0006	2	16	16	16	125	16.2	TD.2
YGR/L 1212-3T12-S		0003	0007	3	12	12	12	125	12.3	TD2
YGR/L 1616-3T16-S		0004	0008	3	16	16	16	125	16.3	TD.3
YGR/L 1212-2T12-S-C		0009	0013	2	12	12	12	125	12.2	TD.2
YGR/L 1616-2T16-S-C	•	0010	0014	2	16	16	16	125	16.2	10.2
YGR/L 1212-3T12-S-C	•	0011	0015	3	12	12	12	125	12.3	TD2
YGR/L 1616-3T16-S-C		0012	0016	3	16	16	16	125	16.3	TD.3

Серия	Размер	Винт	Ключ
YGR/L	S	4015-M4x11 (27100166)	80-T15 (27100210)

Державки для внутреннего точения канавок

Державки для TD. пластин

											:c.115	Едизм. :ми
Обозначение	4	Артику R	л 2621 L	cw	DMIN	CDX	DCON	н	OHN	LF	WF	Пластина
YGR/L 16-2-T8.5-C		0001	0005	2	25	8.5	16	14.8	28	150	16.5	TD.2
YGR/L 20-3-T6-C	•	0002	0006	3	25	6	20	18.3	40	170	16	
YGR/L -3-T6-C	•	0003	0007	3	25	6	25	23	40	200	18.5	TD.3
YGR/L32-3-T5-C		0004	8000	3	31	5	32	30	60	250	21	

Серия	Passep	Винт	Ключ
	16-2C.	2503-M4x10 (27100216)	AAL-03-3 (27100199)
YGR/L	20~25-3C	2504-M5x12 (27100218)	AAL-05-4 (27100200)
	32-3C	2004-M8x1x20 (27100223)	AAL-05-4 (27100200)

Резцы-лезвия для точения канавок и отрезки

Резцы- лезвия для TD. пластин

c.115

Едизм.:мм

Обозначение	٨	Артикул 2612	CZCms	CW	CDX	HF	LF	w	Пластина
YGTD2-32		0001	32	2	20	25	150	2.4	TD.2
YGTD3-32		0002	32	3	20	25	150	2.4	TD.3.
YGTD2 32-C	•	0003	32	2	20	25	150	2.4	TD.2
YGTD3 32-C	•	0004	32	3	20	25	150	2.4	TD.3.

Серия

Ключ

YGTD..

ALA-01 (27100226)

Блоки для крепления резцов-лезвий

										C. 113	Едизм.:м
Обозначение	4	Артикул 2613	CZCws	н	В	HF	WF	HRY	OAL	OAH	OAW
YGBTD 20-32		0001	32	20	19	25	32.7	13	100	50	38
YGBTD 25-32		0002	32	25	23	25	36.7	8	110	50	42
YGBTD 32-32		0003	32	32	29	25	42.7	5	110	54	48
YGBTD 20-32-C	•	0004	32	20	19	25	32.7	13	100	50	38
YGBTD 25-32-C		0005	32	25	23	25	36.7	8	110	50	42
YGBTD 32-32-C	•	0006	32	32	29	25	42.7	5	110	54	48

Серия	Размер	Прижим	Винт	Ключ
VCDTD	20-32	ABK-03	2505-M6x30 (27100225)	AAL-07-5 (27100201)
YGBTD	25~32-32	ABK-04	2505-M6x30 (27100225)	AAL-07-5 (27100201)

Отрезка и обработка канавок

Обзор пластин для операций отрезки и обработки канавок

Марки сплавов для отрезки и обработки канавок

YG602G (YG602)

P20 - P35 M20 - M40 K20 - K40 515 - S25

Универсальный сплав для отрезки и обработки канавок

- Сверхпрочное покрытие PVD с оптимальной термостойкостью и прочностью
- Субмикронная основа, созданная специально для удовлетворения самым жестким требованиям

Сменные пластины для отрезки и обработки канавок

Стружколомы пластин для отрезки и обработки канавок

Телефон: +7-499-110-71-06, www.yg1.kr, E-mail: russia@yg1.ru

7/GTURN

Отрезка и обработка канавок - Пластины

Сменные пластины для отрезки и обработки канавок (ТD.)

Серия	L	CW
TD* 2	20	2
TD*3	20	3
TD*4	20	4
TD*5	25	5

* CDX : Максимальная глубина резания

•: Номенклатурная позиция •: Позиция по доп. заказу

				Отрезка и об	работка	Точ	ение	Артику	л 5200 <u>.</u> .
	TD.	Обозначение	RE	Fn (мм/об.)	CDX (MM)	Fn (мм/об.)	Ap (MM)	YG602	YG602G
		TDP2002	0.2	0.04~0.12	19			0012	0036
	5	TDP3002	0.2	0.05~0.16	19			0029	0030
-Р	Отрезка и обработка (Позитивные)	TDP4003	0.3	0.06~0.18	19			0023	O 0038
		TDN2002	0.2	0.04 ~ 0.12	19			0010	O 0035
		TDN3002	0.2	0.07~0.22	19			0024	0025
-N	Отрезка и обработка	TDN4003	0.3	0.08~0.25	19			0022	0037
	(Общего назначения)	TDN5003	0.3	0.09~0.35	23			0042	
-Y	8	TDY3E - 0.4	0.4	0.10~0.20	19	0.10~0.38	0.50~2.20		0027
-1	Продольное точение	TDY4E - 0.4	0.4	0.15~0.26	19	0.10~0.40	0.50~2.80		0020
		TDNR2002-6	0.2	0.06~0.18	19			0043	
-N		TDNL2002-6	0.2	0.06~0.18	19			0044	
-14	Пластины со скосом	TDNR3002-6	0.2	0.07~0.22	19			0040	
	10.020000	TDNL3002-6	0.2	0.07~0.22	19			0047	
		TDPR2002-6	0.2	0.06~0.18	19			0045	
-Р	7	TDPL2002-6	0.2	0.06~0.18	19			0046	
	Пластины со скосом	TDPR3002-6	0.2	0.07~0.22	19			0048	
		TDPL3002-6	0.2	0.07~0.22	19			0049	

	Ско	рость резания	Vc (M/I	мин.)
ISO	VDI	Подгруппа	YG602G ((YG602) Max.
	1~5	Нелегированная сталь	90	180
P	6~9	Низколегированная сталь	80	120
	10~11	Высоколегированная сталь	80	110
м	12~13	Ферритная и мартенсит. сталь	70	160
IVI	14	Аустенит. нержавеющ. сталь	55	140
к	15~16	Серый чугун	110	185
N.	17~18	Высокопрочный чугун	110	140
N	21~30	Алюминий	250	440
S	31~37	Суперсплавы и Титан	25	45
H	38~41	Высокотвердые материалы	25	50

ФРЕЗЕРНАЯ ОБРАБОТКА

Расшифровка кодировки корпуса Обзор корпусов Сменные пластины и корпуса

Расшифровка кодировки - Корпуса

СН - Фасочная фреза

Фрезерная обработка - Система кодирования

Система обозначения сменных пластин (ISO)

1 Форма 2

Задний угол (AN)

3

Допуск

4

Крепление и стружколом 5

16

6

Размер пластины Толщина пластины

08

Радиус закругления

S

Обозначение	Форма					
н	Шестигранная					
0	Восьмигранная					
P	Пятиугольная					
S	Квадратная					
T	Треугольная					
V	Ромбовидная 35°					
w	Трехгранная					
L	Прямоугольная					
A	Параллелограммная 80°					
R	Круглая					

2-Задний угол (AN)

Обозначение	Задний угол (А	N)
N	Без заднего угла	
В	Задний угол 5°	
C	Задний угол 7°	
P	Задний угол 11°	
D	Задний угол 15°	1
E	Задний угол 20°	AN
F	Задний угол 25°	
0	Специальный	

3 - Класс допуска

Обозначение	Диам.вянс.окружн.1С (мм)	Высота реж. кромки М (мм)	Толщина 5 (мм)
C	± 0.025	± 0.013	± 0.025
E	± 0.025	± 0.025	± 0.025
G	± 0.025	± 0.025	± 0.13
H	± 0.013	± 0.013	± 0.025
K*	± 0.05~0.15*	± 0.013	± 0.025
M*	± 0.05~0.15*	± 0.08~0.2*	± 0.13
U*	± 0.08~0.25*	± 0.13~0.38*	±0.13

Класс допуска отличается для пластин размера IC. См. ISO 1832

4 - Крепление и стружколом

Обозначение	Крепление	Стружколом	Изображение
N	Без крепежного	х	
R	отверстия	Односторонний	
w	Винтовое	х	
Т	крепежное отверстие	Односторонний	
U		Двусторонний	(三)
x		Специальный	

5 - Размер пластины

* Отсутствует стандарт на размер пластин для фрезерования

6 - Пластина Толщина

* Отсутствует стандарт на толщину пластин для фрезерования

Фрезерная обработка - Система кодирования

Система обозначения сменных пластин (ISO)

стр. 104
10
YG602
Сплав

7 - Радиус при вершине (RE)

Эбозначение	Толщина - S (мм)	Обозначение	Толщина -S (мм)
04	0.4	16	1.6
08	0.8	20	2.0
12	1.2	24	2.4

8 - Геометрия вершины

8-1	8-2	8-3	8-4
P	D	T	R
Угол режущей кромки (KRINS)	Задний угол (AS)	Состояние кромки	Направление подачи

*См. стр.. 105, типы -AL, -ST, -TR...

8-1 - Угол режущей кромки (KRINS)

Обозначение	Угол режущей кромки (KRINS)
P	90°
A	45°
D	60°
E	75°
F	85°
Z	Специальный

8-3 - Форма кромки

Обозначение	Форма кром	IKM
F	Заостренная	
E	Закругленная	
T	Скошенная	
S	Скошенная и закругленная	

8-2 - Задний угол(АЅ)

Јбозначение	Задний угол (AS)
N	0°
P	11°
D	15°
E	20°
F	25°
Z	Специальный

8-4 - Направление подачи

Обозначение	Направление п	одачи
R	Правосторонняя пластина	
N	Нейтральная пластина	
L	Левосторонняя пластина	1

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

120

Сплавы и стружколомы для фрезерования

Сплавы для фрезерования

Сплавы и стружколомы для фрезерования

Сплавы для фрезерования

YG501

Для обработки Чугуна

- Основание, специально разработанное для обеспечения высокой износостойкости
- Превосходная стойкость к износу при фрезеровании чугуна

YG5020

Сплав для обработки чугуна с CVD покрытием

- Покрытие CVD для превосходной износостойкости
- Повышенная ударная вязкость для устойчивости к выкрашиванию

YG50

Оптимальный выбор для обработки алюминия

- Субмикронная основа, созданная специально для обработки алюминия
- С уникальным покрытием PVD

Стружколомы для фрезерования

-AL

- Для алюминия
- Острая геометрия

-ST

- Для нержавеющей стали, жаропрочных суперсплавов
- Острая геометрия

Пластины общего назначения

• Оптимальный выбор для общих задач

-TR

- Для закаленной стали
- Прочная геометрия

...W / ...N

• Для закаленных материалов и чугуна

Обзор корпусов

Торцевое фрезерование

Фрезерование уступов

Фреза			ADKT 1505	AOMT 1236	APKT 1003	APKT 1604	APMT 1135	APMT 1604
APMX			15	12	10	16	10	16
DC			Ø25~125	Ø16~50	Ø16~100	Ø25~200	Ø60~80	Ø25~80
стр.			c.1	43	c.144	c.148	c.	149

ины, пукурузная фреза		150		
	APKT 1003		TPKN/TPKR/TPCN 1603	TPKN/TPKR/TPCN 2204
	37~55		12	18
	Ø25~40		Ø50~125	Ø63~315
	c. 146		c.	150
	1/ /	APKT 1003 37~55 Ø25~40	APKT 1003 37~55 Ø25~40	APKT 1003 37~55 025~40 TPKN/TPKR/TPCN 1603 12 050~125

76Mill

Обзор корпусов

Копировальное фрезерование

Кругль	іе, Позитивные						
Фреза			RDKT/	RDKW 1204	08T2	RPMT/RPMV	V 1204
APMX			5	6	4	5	6
DCX			Ø20~63	Ø25~100	Ø20~25	Ø25~32	Ø32~80
стр.			c. 15	66 - 157		c. 158	

Фрезерование с высокими подачами

Heran	гивные, 4 вер	шины					Позитивные, 4 вершины	
Фреза		T. C.		ENMX 0604	0	ENMX 0905		SDMT/SDMW
APMX				0.9	1	1.5		1.8
DCX			Q	16~18	Ø20~50	Ø25~125	FEOU	Ø32~100
стр.				C.	163	KIII		c. 166

Фрезы для обработки фасок

Модульный хвостовик

Обзор сменных пластин для фрезерования

		ADKT	ADKT 1505	c. 151
2		AOMT	AOMT 1236	c. 151
Α		APKT	APKT 1003, 1604	c.152 / 170
2 Вершины	Позитивные	APMT	APMT 1135, 1504, 1604	c. 153
		APXT	APXT 1135, 1604	c. 153
Е 4 Вершины	Негативные	ENMX	ENMX 0604 ENMX 0905	c. 167
		ODMT / ODMW	ODMT/ODMW 0605	c. 131
	10	OFER	OFER 0704	
0	Позитивные	OFMT	OFMT 05T3	c. 132
Восьми- угольные	Негативные	ONMU / ONHU	ONMU / ONHU 0806	c. 133
Р 10 вершин	О Негативные	PNMU	PNMU1206	c. 142
	0	RDKT/RDKW	RDKT 0802, 10T3, 1204, 1604 RDKW 0501, 0702, 0802, 10T3, 1204	c. 159
R	Позитивные Круглые	RDMT / RDMW	RDMT 0802, 0803, 10T3, 1204 RDMW 0802, 10T3, 1204	c. 160
Круглые	۵	RPMT / RPMW	RPMT 08T2, 10T3, 1204 RPMW 1003, 1204	c. 161
	Позитивные 3 Вершины	RBEX50	RBE X50	c. 162
	Высокая подача	SDMT / SDMW	SDMT 1204, SDMW 1204	c. 168
		SEKT	SEKT 12T3, 1204	c. 136
	0	SEGT	SEGT12T3, 1204	c. 137
	AR	SEMT	SEMT1204, 13T3	c. 138
		SPMT	SPMT 1204	c. 141
S Квадратные	Позитивные	SDKN, SDCN (45°)	SDKN, SDCN 1203, 1504	c. 134
квадратные		SEKN / SEKR (45°)	SEKR, SEKN 1203	c. 135
	000	SPKN / SPKR / SPCN(75°)	SPKN 1203, 1504 SPKR 1203 SPCN 1203, 1504	c. 140
	ISO	SPUN	SPUN 1203	c. 141
	Негативные	SNMX	SNMX1206	c. 139
Т	44	TPKN/TPKR/TPCN(90°)	TPKN 1603, 2204 TPKR 1603, 2204 TPCN 2204	c. 154
Треугольные	ISO	TPUN	TPUN 1603	c. 155

Корпус для ONMU

Угол в плане: 45° 16 Вершин, Негативные

ZEFP: Количество эффективных режущих кромок

CICT : Количество пластин CBDP : Посадочное отверстие

o :c. 133

Ед. изм.: мм

Серия	APMX	Обозначение	Артикул 15000	DC	DCX	ZEFP	LF	ТИП	DCON	CBDP	DCSFMS	PCD1	PCD2	۵
		YGF45 - ONMU08 - D63Z5S22-C	171	63	75	5	40		22	22	49	4	Œ.	•
		YGF45 - ONMU08 - D80Z6S27-C	172	80	92	6	50		27	25	58	la.		•
		YGF45 - ONMU08 - D100Z7532-C	173	100	112	7	50		32	26	67	1		•
ONMU 0806	5.5	YGF45 - ONMU08 - D125Z8S40	174	125	137	8	63	Торцово-	40	32	87	7		x
		YGF45 - ONMU08 - D160Z10S40	175	160	172	10	63	U	40	32	107	66.7	0	X
		YGF45 - ONMU08 - D200Z12560	176	200	212	12	63		60	40	130	101.6	-	X
		YGF45 - ONMU08 - D315Z16S60	177	315	327	16	63		60	40	220	101.6	177.8	X

► ONHU Зачистная пластина (Wiper)

Винты: 1020-М5Х14 (27100180)

Ключ: Тогх 80-Т20 (27100211)

Корпус для SNMX

Угол в плане: 45°

8 Вершин, Негативные

ZEFP: Количество эффективных режущих кромок

CICT : Количество пластин CBDP : Посадочное отверстие

0		c.139	
v	ï	G. 139	

76Mill

Ед, изм.: мм

Серия	APMX	Обозначение	Артикул 15000	DC	DCX	ZEFP	LF	ТИП	DCON	CBDP	DCSFMS	PCD1	PCD2	4
		YGF45 - SNMX12 - D50Z4S22-C	241	50	63	4	42		22	22	42	~	~	•
		YGF45 - SNMX12 - D50Z5S22-C	243	50	63	5	42		22	22	42		-	•
		YGF45 - SNMX12 - D63Z6S22-C	244	63	76	6	42		22	22	48	-	1+0	•
		YGF45 - SNMX12 - D63Z7S22-C	245	63	76	7	42		22	22	48	-	-	•
		YGF45 - SNMX12 - D80Z7S27-C	247	80	93	7	52		27	25	58		.~.	•
1206	6.0	YGF45 - SNMX12 - D80Z8S27-C	248	80	93	8	52	Торцово- цилинд.	27	25	58	-	-	•
		YGF45 - SNMX12 - D100Z10S32-C	251	100	113	10	52		32	26	67	T.	2	•
		YGF45 - SNMX12 - D100Z8S32-C	250	100	113	8	52		32	26	67		*	•
		YGF45 - SNMX12 - D125Z11S40	253	125	138	11	65		40	32	80		9.1	X
		YGF45 - SNMX12 - D160Z12S40	255	160	173	12	65		40	32	110	66.7	*	×
		YGF45 - SNMX12 - D200Z14S60	256	200	213	14	65		60	40	130	101.6	20	×

Винты: 4015-М4Х11 (27100166)

Ключ: Torx 80-T15 (27100210)

Корпус для OFER, OFMT

Угол в плане: 43° 8 Вершин, Позитивные

<S> Торцовоцилиндрическая фреза

DCSFMS -DCON-CBDP APMX DC DCX

ZEFP: Количество эффективных режущих кромок

СІСТ : КОЛИЧЕСТВО ПЛАСТИ	н
СВDР: Посадочное отвер	стие

BDP : Noca	дочное о									o : c. 1	32	Ед, изм	r. ww	
Серия	APMX	Обозначение	Артикул 15000	DC	DCX	ZEFP	LF	TUIT	DCON	CBDP	DCSFMS	PCD1	PCD2	۵
		YGF43 - OFER07 - D63Z4S22	134	63	75	4	45		22	22	48	5	7	X
		YGF43 - OFER07 - D80Z5S27	135	80	92	5	50		27	25	58	Ē	-	X
OFER 0704	5.0	YGF43 - OFER07 - D100Z6S32	136	100	112	6	50	Торцово-	32	26	80	-5	4	x
		YGF43 - OFER07 - D125Z8S40	137	125	137	8	63	7,7,1,1,1,1	40	32	85	+		x
		YGF43 - OFER07 - D160Z9S40	138	160	172	9	63		40	32	110	66.7	+	X
		YGF43 - OFMT05 - D50Z5S22-C	120	50	58	5	40		22	22	42	-	50	
OFMT	20	YGF43 - OFMT05 - D63Z6S22-C	121	63	71	6	40	Торцово-	22	22	48	+	*	•
05T3	3.0	YGF43 - OFMT05 - D80Z7S27-C	122	80	88	7	50	цилинд.	27	25	58	-	PC.	•
		YGF43 - OFMT05 - D125Z9S40	123	125	133	9	63		40	32	85			x
		Для OFER 0704:		Винты	a : AKV	-15-M8)	X1X20	(27100049	, 5	Клю	ч: AAL	05-4 mi	m (2710	0200
		Для диаметра 50 мм:		Винты	oi : 4015	5-M4X9	(2710	0165)	5	Клю	ч:Torx	80-T15	(271002	10)
		Для остальных диаметров:		Винты	ol : 4015	5-M4X1	1 (271	00166)	S	Клк	ч : Тогх	80-T15	(271002	(10)

Корпус для ODMT, ODMW

Угол в плане: 43° 8 Вершин, Позитивные

<S> Торцовоцилиндрическая фреза

ZEFP: Количество эффективных режущих кромок CICT : Количество пластин CBDP : Посадочное отверстие

CBDP

Серия	APMX	Обозначение	15000	DC	DCX	ZEFP	LF	TUIT	DCON	CBDP	DCSFMS	PCD1	PCD2	•
ODMT		YGF43 - ODMT06 - D80Z6S27-C	117	80	90	6	50		27	23	56	L.	~	•
ODMW	3.5	YGF43 - ODMT06 - D100Z7S32-C	118	100	110	7	50	Торцово-	32	26	78	2	-	•
0605		YGF43 - ODMT06 - D125Z8S40	119	125	135	8	63	7	40	28	89	80	*	x

Винты: 1020-М5Х11 (27100178)

DOSEMS

-DCON-

Ключ: Тогх 80-Т20 (27100211)

Корпус для PNMU

Угол в плане: 36°

10 Вершин, Негативные

<5> Торцово-цилиндрическая фреза

ZEFP : Количество эффективных режущих кромок CICT : Количество пластин CBDP : Посадочное отверстие

o: c.142

76Mill

Ед изм:мм

Серия	APMX	Обозначение	Артикул 1700	DC	DCX	ZEFP	LF	TYPE	DCON	CBOP	DCSFMS	PCD1	PCD2	۵
		F36-PNMU12-D50Z4S22	0774	50	83.6	4	40		22	20	42	•	-0	•
		F36-PNMU12-D50Z5S22	0785	50	83.6	5	40		22	20	42	,e:	7-4	•
		F36-PNMU12-D63Z5S22	0775	63	96.6	5	40		22	20	48	14	30	•
PNMU 1206	4.0	F36-PNMU12-D63Z6S22	0483	63	96.6	6	40	Торцово-	22	20	48	12	2	•
		F36-PNMU12-D80Z8S27	0466	80	113.6	8	50	цилиндрич.	27	23	58	- 2	155	•
		F36-PNMU12-D100Z10S32	0467	100	133.6	10	50		32	26	67	- 2	-	•
		F36-PNMU12-D125Z10S40	0786	125	158.6	10	63		40	29	89	Ve-	-	•
		F36-PNMU12-D160Z10S40	0829	160	193.6	10	63		40	29	100		*	

Винты: ТР154008 М4Х8,5 (18000006)

Ключ: TPWBTP15 (18000217)

Корпус для SEKT, SEGT

Угол в плане: 45°

4 Вершины, Позитивные

<S> Торцово-цилиндрическая фреза

ZEFP: Количество эффективных режущих кромок

CICT : Количество пластин CBDP : Посадочное отверстие

o:c.136

Ед изм.; мм

Jr . Hoca	40	A STATE OF THE STA								٧.٠	100		CH VGN	
ерия	APMX	Обозначение	Артикул 15000	DC	DCX	ZEFP	LF	ТИП	DCON	CBDP	DCSFMS	PCD1	PCD2	
		YGF45 - SE12T3 - D50Z4S22-C	202	50	63	4	40		22	22	48	4	14.	15
		YGF45 - SE12T3 - D63Z5S22-C	204	63	76	5	40		22	22	48	a.		
SEKT		YGF45 - SE12T3 - D80Z6S27-C	206	80	93	6	50	Торцово-	27	25	58	+	(**	
12T3	6.0	YGF45 - SE12T3 - D100Z7S32-C	208	100	113	7	50	цилинд.	32	26	65	4		
		YGF45 - SE12T3 - D125Z8S40	209	125	138	8	63		40	32	85	L)	20	
		YGF45 - SE12T3 - D160Z10S40	210	160	173	10	63		40	32	110	4 4	-	
		F45 - SEKT12 - D40Z4S16	17000031	40	54	4	40		16	18	32	2	¥	
		F45 - SEKT12 - D50Z5S22	17000032	50	64	5	40		22	20	48	20		
		F45 - SEKT12 - D63Z4S22	17000033	63	77	4	40		22	20	50	30	æ	
EKT		F45 - SEKT12 - D63Z6S22	17000034	63	77	6	40		22	20	50	7.	14	i
EGT	6.0	F45 - SEKT12 - D80Z4S27	17000035	80	94	4	50	Торцово-	27	22	56	₹		
204		F45 - SEKT12 - D80Z7S27	17000036	80	94	7	50	1	27	22	56	÷		
		F45 - SEKT12 - D100Z8S32	17000037	100	114	8	50		32	25	78	÷	(*)	
		F45 - SEKT12 - D125Z10S40	17000038	125	139	10	63		40	29	90	-	+	
SEGT		F45 - SEKT12 - D160Z12S40	17000039	160	174	12	63		40	30	114	15	(8)	ĺ

Для корпусов под пластины SE..12T3:

Винты: 4015-М3.5Х11 (27100152)

Ключ: Тогх 80-Т15 (27100210)

Корпус для SPKN, SPKR, SPCN

Угол в плане: 75°

4 Вершины, Позитивные ISO

<S> Торцово-цилиндрическая фреза

ZEFP : Количество эффективных режущих кромок

СІСТ : Количество пластин СВDP : Посадочное отверстие

o: c.140

Едизм: мм

Серия	APMX	Обозначение	Артикул 15000_	DC	DCX	ZEFP	LF	тип	DCON	CBIDP	DICSFINS	PCD1	PCD2	۵
		YGF75 - SPKN12 - D50Z4S22	221	50	56	4	42		22	22	42	•		X
		YGF75 - SPKN12 - D63Z5S22	222	63	69	5	40		22	22	48			X
SPKN		YGF75 - SPKN12 - D80Z6S27	223	80	86	6	50		27	25	58			X
SPKR SPCN	8.0	YGF75 - SPKN12 - D100Z7S32	224	100	106	7	50	Торцово- цилинд.	32	26	65	-	2.	X
1203		YGF75 - SPKN12 - D125Z8S40	225	125	131	8	63	4,500,44	40	32	80	7	14	X
		YGF75 - SPKN12 - D160Z9S40	226	160	166	9	63		40	32	110	66.7	,	X
		YGF75 - SPKN12 - D200Z12S60	227	200	206	12	63		60	40	130	101.6		x

Для диаметра 50 мм:

Для остальных диаметров:

Винты: AKV-22-M8X1X14 (27100055)

Ключ: AAL-05-4 mm (27100200)

Винты : AKV-13-M8X1X16 (27100047)

Ключ: AAL-05-4 mm (27100200)

Фрезерная обработка - Торцевое фрезерование - Пластины

ODMT, ODMW - 8 вершин, позитивные

Обозначение

ODMT 060508

ODMW 060508

Серия	IC	S
ODM* 0605	15.9	5.6

Артикул 1200...

Номенклатурная позиция
Позиция по доп. заказу

P30 M35

	JAM				- Market	ILL CA	
BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
	0030						
	0031						

О**DMW** Твердые материалы

ODMT

ODMW

ОБЩЕГО

RE

(MM)

0.8

0.8

Fz

(MM/3y6)

0.21~0.35

0.26~0.40

	C	корость резания							AC (W	/мин.)					
ISO	VDI	Подгруппа	YG	602	YG	622	YG	712	YG	713	YG	613	YG	501	YG	5020
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	-	-	-	(=)
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	190	Q.		-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	-
	12~13	Феррит. и мартенсит. сталь	120	200	1,5	-	~	-	3-0	9	80	180	-	-	-	
M	14	Аустенит. нержав, сталь	130	250	1,000	*	2		- 4		100	200				-
	15~16	Серый чугун	120	250	120	270			1-7	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240		-	100	-	-	-	120	270	150	300
N	21-30	Алюминий		-	1.		- 30		7. ×		-		-	-		
S	31~37	Суперсплавы и Титан	25	45	3 - 1	040	+		(-)	- 2	20	40			-	52
F.	38~41	Высокотверд. материалы	40	80	40	100	-	9	50	100		120	50	90	-	18

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА

АНТИВИБ, ОПРАВКИ

Фрезерная обработка - Торцевое фрезерование - Пластины

OFER, OFMT-8 вершин, позитивные

0	FMT	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
OFMT		OFMT 05T308	0.8	0.15~0.25		0032						
Общего назначения	0											

	C	корость резания							Vc(M	мин.)						
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	T	1.4.	-	-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	4	- 2	
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	0	÷	-	+
8.8	12~13	Феррит. и мартенсит. сталь	120	200		-	~	4	-	-	80	180	I ie	+	-	8
M	14	Аустенит, нержав, сталь	130	250		-	12		294		100	200		(-		
	15~16	Серый чугун	120	250	120	270	14	-	- 65	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	112		10	-	100	-	120	270	150	300
N	21~30	Алюминий			-	-	1		-	1.5		-	-	Tries.	-	12
S	31~37	Суперсплавы и Титан	25	45	-	J.	16		15-0	100	20	40			-	
H	38~41	Высокотверд. материалы	40	80	40	100	12	-	50	100	-	-	50	90	20	-

Фрезерная обработка - Торцевое фрезерование - Пластины

ONMU / ONHU - 16 вершин, негативные

	C	корость резания						3	Vc (M	/мин.)					
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG Min	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	-	-	-	1-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	150	-		-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	9.	-	-	-
	12~13	Феррит. и мартенсит. сталь	120	200	1.6	-	~	×	3-0	- 9	80	180	-	-	-	-8
M	14	Аустенит. нержав, сталь	130	250			2		- 4		100	200				-
	15~16	Серый чугун	120	250	120	270	180		167	1,21	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	-			-	(-	-	120	270	150	300
N	21-30	Алюминий	-	+	15		- 60		350		-	-		-	¥	100
S	31~37	Суперсплавы и Титан	25	45	ge¹ ⊥) <u>4</u> ,	12/		(i -)	- 91	20	40			-	12
H	38~41	Высокотверд. материалы	40	80	40	100			50	100	-	140	50	90	-	1.0

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЛ ОБРАБОТКА

Фрезерная обработка - Торцевое фрезерование - Пластины

SDKN / CN - 4 вершины, позитивные, по стандарту ISO

	Серия	AS	IC	S
Ī	SD** 1203	15°	12.70	3.18
	SD** 1504	15°	15.88	4.76

Артикул 1200... Номенклатурная позиция О: Позиция по доп. заказу

					520	K30			530	H15	
SDKN SDCN	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
	SDKN 1203 AETN	0.5	0.22~0.35	1.85	0058						
	SDKN 1203 AETN - PW	0.4	0.22~0.35	1.98	0253						
SDKN	SDKN 1203 AETN - GW	1.3	0.22~0.35	1.85	0251						
Твердые материалы	SDKN 1504 AETN	0.45	0.22~0.35	2.00	0059						
	SDKN 1504 AETN - PW	0.4	0.22~0.40	1.95	0288						
	SDKN 1504 AETN - GW	1.3	0.22~0.40	2.05	0286						
SDCN	SDCN 1203 AESN-M		0.05~0.2	2.04			0135				
Шлифован-	SDCN 1504 AESN - M	7	0.05 ~ 0.2	2.19			0150				
ная пластина	SDCN 1504 AESN - MR	1.0	0.05~0.2	2.19			0201				

- PW : улучшенное качество поверхности
- GW : Геометрия Wiper
- М : для штампов и пресс-форм
- MR : для черновой об-ки штампов и пресс-форм

	корость резания							ACIW	мин.						
VDI	Подгруппа	100000	335	1000	-	1000	3 3 5 5 1	E 122	2.57	100000	222	1,7,71	F. G. S	2.50	5020 Max
4.6	Hannan and and	-	- Court		17.77	71100				-3.5	00.30	71112	Max	MILL	Max
1~5	нелегированная сталь	140	380	140	400	1/0	300	150	280	90	230	-	-	-	151
6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	4	-	
10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		٠	-	
12~13	Феррит. и мартенсит. сталь	120	200		-	8	8			80	180	Del .	+	-	8
14	Аустенит. нержав. сталь	130	250	10		12		2.0		100	200		J.		- 19
15~16	Серый чугун	120	250	120	270	18	-	1.6	-	-	- (2)	180	350	200	350
17~18	Высокопрочный чугун	130	220	130	240	12	- 2	1840	-		-	120	270	150	300
21~30	Алюминий	-		1-1	-			-	-	10	-	-	Trè u		
31~37	Суперсплавы и Титан	25	45	-	A-6	4	-	u€v.	- 0-1	20	40			-	-
38~41	Высокотверд, материалы	40	80	40	100	14	*	50	100	-	-	50	90	-	
	VDI 1~5 6~9 10~11 12~13 14 15~16 17~18 21~30 31~37	VDI Подгруппа 1~5 Нелегированная сталь 6~9 Низколегированная сталь 10~11 Высоколегирован. сталь 12~13 Феррит. и мартенсит. сталь 14 Аустенит. нержав. сталь 15~16 Серый чутун 17~18 Высокопрочный чугун 21~30 Алюминий 31~37 Суперсплавы и Титан	VDI Подгруппа YG Min 1~5 Нелегированная сталь 140 6~9 Низколегированная сталь 120 10~11 Высоколегирован, сталь 70 12~13 Феррит. и мартенсит. сталь 120 14 Аустенит. нержав. сталь 130 15~16 Серый чугун 120 17~18 Высокопрочный чугун 130 21~30 Алюминий - 31~37 Суперсплавы и Титан 25	VDI Подгруппа YG602 Min Max 1~5 Нелегированная сталь 140 380 6~9 Низколегированная сталь 120 300 10~11 Высоколегирован. сталь 70 150 12~13 Феррит. и мартенсит. сталь 120 200 14 Аустенит. нержав. сталь 130 250 15~16 Серый чугун 120 250 17~18 Высокопрочный чугун 130 220 21~30 Алюминий - - 31~37 Суперсплавы и Титан 25 45	VDI Подгруппа YG602 Min Max Min Max YG Min Max Min Max 1~5 Нелегированная сталь 140 380 140 6~9 Низколегированная сталь 120 300 120 10~11 Высоколегирован. сталь 70 150 70 12~13 Феррит. и мартенсит. сталь 120 200 - 14 Аустенит. нержав. сталь 130 250 - 15~16 Серый чутун 120 250 120 17~18 Высокопрочный чугун 130 220 130 21~30 Алюминий 31~37 Суперсплавы и Титан 25 45 -	VDI Подгруппа YG602 Min Max YG622 Min Max 1~5 Нелегированная сталь 140 380 140 400 6~9 Низколегированная сталь 120 300 120 320 10~11 Высоколегирован. сталь 70 150 70 170 12~13 Феррит. и мартенсит. сталь 120 200 14 Аустенит. нержав. сталь 130 250 15~16 Серый чугун 120 250 120 270 17~18 Высокопрочный чугун 130 220 130 240 21~30 Алюминий 31~37 Суперсплавы и Титан 25 45	VDI Подгруппа YG602 MIn YG622 MIn YG622 MIn YG Max MIn 1~5 Нелегированная сталь 140 380 140 400 170 6~9 Низколегированная сталь 120 300 120 320 180 10~11 Высоколегирован, сталь 70 150 70 170 100 12~13 Феррит, и мартенсит, сталь 120 200 - - - 14 Аустенит, нержав, сталь 130 250 - - - 15~16 Серый чугун 120 250 120 270 - 17~18 Высокопрочный чугун 130 220 130 240 - 21~30 Алюминий - - - - - 31~37 Суперсплавы и Титан 25 45 - - -	VDI Подгруппа YG602 Min YG622 Max YG712 Min Max Min Max Min Max 1~5 Нелегированная сталь 140 380 140 400 170 300 6~9 Низколегированная сталь 120 300 120 320 180 250 10~11 Высоколегирован, сталь 70 150 70 170 100 140 12~13 Феррит, и мартенсит, сталь 120 200 - <t< td=""><td>VDI Подгруппа YG602 Min YG622 MIn YG712 Max YG YG 1~5 Нелегированная сталь 140 380 140 400 170 300 150 6~9 Низколегированная сталь 120 300 120 320 180 250 130 10~11 Высоколегирован, сталь 70 150 70 170 100 140 90 12~13 Феррит, и мартенсит, сталь 120 200 -</td><td>VDI Подгруппа YG602 Min YG622 Min YG712 Min YG713 Min Max Min Max 6~9 Низколегированная сталь 120 300 120 320 180 250 130 235 10~11 Высоколегирован. сталь 70 150 70 170 100 140 90 130 12~13 Феррит. и мартенсит. сталь 120 200 -</td><td>VDI Подгруппа YG602 MIn Max Min Max</td><td>VDI Подгруппа YG602 Min YG622 Min YG712 Min YG713 Min YG613 Min Max Min</td><td>VDI Подгруппа YG602 Min YG622 Min Max Min</td><td>VDI Подгруппа YG602 Min Max Min Max YG622 Min Max M</td><td>VDI Подгруппа YG602 Min Max Min Max</td></t<>	VDI Подгруппа YG602 Min YG622 MIn YG712 Max YG YG 1~5 Нелегированная сталь 140 380 140 400 170 300 150 6~9 Низколегированная сталь 120 300 120 320 180 250 130 10~11 Высоколегирован, сталь 70 150 70 170 100 140 90 12~13 Феррит, и мартенсит, сталь 120 200 -	VDI Подгруппа YG602 Min YG622 Min YG712 Min YG713 Min Max Min Max 6~9 Низколегированная сталь 120 300 120 320 180 250 130 235 10~11 Высоколегирован. сталь 70 150 70 170 100 140 90 130 12~13 Феррит. и мартенсит. сталь 120 200 -	VDI Подгруппа YG602 MIn Max	VDI Подгруппа YG602 Min YG622 Min YG712 Min YG713 Min YG613 Min Max Min	VDI Подгруппа YG602 Min YG622 Min Max Min	VDI Подгруппа YG602 Min Max Min Max YG622 Min Max M	VDI Подгруппа YG602 Min Max

Фрезерная обработка - Торцевое фрезерование - Пластины

SEKR / N - 4 вершины, позитивные, по стандарту ISO

	Серия	AS	IC	S	
1	SEK* 1203	20°	12.7	3.2	

Артикул 1200...

●: Номенклатурная позиция

О: Позиция по доп. заказу

P30 M35

						520				530	H15	
SEKR SEKN		Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
	1.2.	SEKR 1203 AFTN	0.4	0.14~0.30	1.40	0051						
SEKR Общего назначения		SEKR 1203 AFTN-PW	0.4	0.14~0.30	2.00	0296						
	-	SEKN 1203 AFTN	0.4	0.22~0.35	1.40	0054						
SEKN Твердые	60	SEKN 1203 AFTN -GW	0.4	0.23~0.35	2.00	0304						
материалы		SEKN 1203 AFTN -PW	0.4	0.22~0.35	2.00	•					-	

- PW : улучшенное качество

поверхности

- GW : Геометрия Wiper

	C	корость резания							VC (M	/мин.)					
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG	712 Max	YG	713 Max	YG	613 Max	YG	501 Max	YG!	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	-	-	-	-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-		-	-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	-	-	-	-
	12~13	Феррит. и мартенсит. сталь	120	200	1,67	4	~	-	240	- 41	80	180	-	-	-	- 8
M	14	Аустенит. нержав, сталь	130	250	40	-			- 40		100	200				-
	15~16	Серый чугун	120	250	120	270	-		1.4.7	120	-	- 8	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240				-	(-	-	120	270	150	300
N	21-30	Алюминий	-	+	150		-		300	1.2	-			-	÷	-
S	31~37	Суперсплавы и Титан	25	45	g=12	_5 <u>4</u> -5	14/		1,40	- 61	20	40			-	12
G	38~41	Высокотверд, материалы	40	80	40	100		-	50	100	-	- 40	50	90	- 4	-

ТОКАРНАЛ ОБРАБОТКА.

ТОКАРНАЯ ОБРАБОТКА ДЕРЖАВКИ

MHOOPMALINE

Фрезерная обработка - Торцевое фрезерование - Пластины

SEKT - 4 вершины, позитивные

Серия	IC	S
SEKT 1204	12.7	4.9
SEKT 12T3	13.4	4

Артикул 1200...

Номенклатурная позиция
 Позиция по доп. заказу

						M30 K30 520	K30	P20	P30	M35	K15	K15	N15
SEKT 1	204	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020	YG50
SEKT 1204 Общего назначения	0	SEKT 1204 AFTN	1.1	0.20~0.35	1.18	0055	0416						
-ST Нержавеющ. сталь, суперсплавы		SEKT 1204-ST	1.1	0.08 ~ 0.30	2.00	0257							
- AL Алюминий	0	SEKT 1204-AL	1.1	0.07~0.55	1.18								O 0023

SEKT	12T3	Обозначение	(MM)	(MM/3y6)	(MM)	3602	3622	3712	3713	3613	3501	5020	G50
SEKT 12Т3 Общего назначения		SEKT 12T3 AGTN	1.5	0.15~0.30	1.30	0056							
-ST Нержавеющ. сталь, суперсплавы	0	SEKT 12T3 - ST	1.5	0.08 ~ 0.30	2.00	0271							
-AL Алюминий	0	SEKT 12T3 - AL	1.5	0.07 ~ 0.55	1.30								O 0239

	Ско	рость резания							- 4	Vc (M	/мин.)						
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG Min	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max	YO	350 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230		- 6	(-)	191		- 5
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	10-2	- C-	14	-		1.40
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	10	-	2	9	-3-	
	12~13	Феррит. и мартенсит. сталь	120	200	9	-	~	-	-	- 6	80	180	1-1	- 150	191	-	-	>
M	14	Аустенит. нержав. сталь	130	250	-	œ		-	-		100	200	-	280				
v	15~16	Серый чугун	120	250	120	270	- 2	-	(4)	-	100		180	350	200	350	16	-
K ·	17~18	Высокопрочный чугун	130	220	130	240	12	1-	-		Y/2/	-	120	270	150	300		
N	21~30	Алюминий		-	-		-	(-)	-				-				300	800
S	31~37	Суперсплавы и Титан	25	45),±,	-	4	-	(4)		20	40			2	4	10	-
l i	38~41	Высокотверд. материалы	40	80	40	100	-	-	50	100		-	50	90	-	-	-	-

7GMill

Фрезерная обработка - Торцевое фрезерование - Пластины

SEGT - 4 вершины, позитивные

Обозначение

SEGT 1204-AL

(Серия	IC	S
SE	GT 1204	12.74	4.91
SE	GT 12T3	13.40	4.03

Артикул 1200...

●: Номенклатурная позиция

○: Позиция по доп. заказу

0

0467

M30	rau	020	P30	M35	K15	K15	Albert	
K30 520	K30	P20	P30	S30	H15	NID	W12	
YG602	YG622	YG712	YG713	YG613	YG501	YG5020	YG50	

-AL Алюминий

SEGT 1204

SEG	T 12T3	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020	YG50
		SEGT 12T3-AL	1.5	0.1~0.35	1.94								O 0468
	- 10			>									

RE

(MM)

1.1

Fz

(MM/3y6)

0.1~0.35

BS

(MM)

2.01

-AL Алюминий

	Ско	рость резания							-	VC (M	/мин.)						
ISO	VDI	Подгруппа	YG	602 Max	YG	622 Max	YG	712 Max	YG Min	713 Max	YG	613 Max	YG Min	501 Max	YG:	5020 Max	YO	350 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	1.4	-	-	-		
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	2	- 2	-	•	4.5	-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	19.	12	-	-	0.1	1.9.
М	12~13	Феррит. и мартенсит. сталь	120	200	-	-	4	-	74		80	180	1,4	-	-	9	740	-
IVI	14	Аустенит. нержав, сталь	130	250					1.		100	200	1	· •			•	
ĸ	15~16	Серый чугун	120	250	120	270	4	-	1.6	1.5		-	180	350	200	350		-
^	17~18	Высокопрочный чугун	130	220	130	240	-	2	r an	18	-	4	120	270	150	300		- 15
N	21~30	Алюминий			1.	-			-				-			-	300	800
S	31~37	Суперсплавы и Титан	25	45	7	-	2	-	15-2	30	20	40			140	H	190	100
Н	38~41	Высокотверд. материалы	40	80	40	100		-	50	100	-	-	50	90		*	an.	-

Фрезерная обработка - Торцевое фрезерование - Пластины

SEMT-4 вершины, позитивные

Обозначение

SEMT 1204 AFTN

Серия	IC	S	
SEMT1204	12.92	5.1	
SEMT13T3	13.40	4.0	

Артикул 1200... Номенклатурная позиция О: Позиция по доп. заказу

	P30					
M30	Pau	P20	P30	M35	K15	K15
K30	K30		-	14133		
520				530	H15	
ĭG	Ϋ́G	YG	YG	YG	YG	YG
602	622	712	713	613	501	5020

SEMT 1204 Общего назначения

SEMT

SEMT 13T3 AGSN	1.5	0.15~0.3	1.31	0203		

Fz

(MM/3y6)

0.26~0.4

BS

(MM)

1.24

SEMT 13T3 Общего назначения

RE

(MM)

1.2

	C	корость резания							Vc(M	мин.)						
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG Min	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	17,47		-	
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	1.	- 1 4 2	-	-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		÷	-	(*)
М	12~13	Феррит. и мартенсит. сталь	120	200		-	~	*	-	-	80	180	1.90	4	-	8
IVI	14	Аустенит. нержав. сталь	130	250	10		2		P. 9.	- (-1	100	200	-	ij ÷		
к	15~16	Серый чугун	120	250	120	270	18	-	1 4	-	-	- (-)	180	350	200	350
•	17~18	Высокопрочный чугун	130	220	130	240	112		1140	-	r ệ n	-	120	270	150	300
N	21~30	Алюминий			14.1	-	100		-	1.5	(+)	-	-	+	-	
S	31~37	Суперсплавы и Титан	25	45	/÷	0 4 5	4		1054	-	20	40			-	-
H	38~41	Высокотверд, материалы	40	80	40	100	-	*	50	100	-	-	50	90	20	- 6

SNMX Общего

Фрезерная обработка - Торцевое фрезерование - Пластины

SNMX-8 вершин, негативные

	C	корость резания							VC (M	/мин.)					
ISO	VDI	Подгруппа	YG	602	YG	622	YG	712	YG	713	YG	613	YG	501	YG	5020
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	1 (4)	-	-	- (-)
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	15	o <u>€</u>	•	-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	-
	12~13	Феррит. и мартенсит. сталь	120	200	1,6/=	-	~	×	3-0	9	80	180	7-1-	-	-	
M	14	Аустенит. нержав, сталь	130	250	400	*				-	100	200				-
	15~16	Серый чугун	120	250	120	270			1.57	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	-		100	-	-	-	120	270	150	300
N	21-30	Алюминий		- +	1.		- 30		540	-	14		-			
S	31~37	Суперсплавы и Титан	25	45	19 - 1	040	-		(4)	2.0	20	40			-	-
H	38~41	Высокотверд, материалы	40	80	40	100	-		50	100		- 40	50	90	- 4	18

Фрезерная обработка - Торцевое фрезерование - Пластины

SPKN / R / CN - 4 вершины, позитивные, по стандарту ISO

Серия	KRINS	AS	IC	S
SP** 1203	75°	11°	12.70	3.18
SP** 1504	75°	11°	15.88	4.76

Артикул 1200...

●: Номенклатурная позиция

Номенклатурная позицияПозиция по доп. заказу

					K30	K30	20 P	30 M		K15
SPKR SPKN SPCN	Обозначение	RE (MM)	Fz (мм/3y6)	BS (MM)	7G602		VG712	VG713	-	
SPKR	SPKR 1203 EDTR	0.8	0.15~0.35	1.40	0050					
Общего назначения	SPKR 1203 EDTR-PW	0.8	0.15~0.35	1.54	0298					
	SPKN 1203 EDTR	0.8	0.16~0.34	1.40	0048		Ì			
	SPKN 1203 EDTR-GW	0.6	0.15~0.28	1.50	0280					
SPKN	SPKN 1203 EDTR-PW	8.0	0.20~0.35	1.50	0279					
Твердые материалы	SPKN 1504 EDTR	0.8	0.15~0.34	1.30	0049					
	SPKN 1504 EDTR-GW	0.8	0.25~0.40	2.20	0305					
	SPKN 1504 EDTR-PW	0.8	0.25~0.40	2.13	0299					
	SPCN 1203 EDSR-M	0.8	0.1~0.2	1.82		108	9)81			
SPCN	SPCN 1203 EDSR - MR	0.8	0.1 ~ 0.2	1.77		1100	98			
Шлифован- ная пластина	SPCN 1504 EDSR - M	0.8	0.1~0.2	1.92		1 100	98			
	SPCN 1504 EDSR-MR	8.0	0.1 ~ 0.2	1.86		B	99			

- PW : улучшенное качество поверхности

- GW : Геометрия Wiper

- М : для штампов и пресс-форм

- MR : для черновой об-ки штампов и пресс-форм

	C	корость резания							Vc(M	мин.)						
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	17,-7	4	-	-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	42	- Zo	
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		÷	-	-
М	12~13	Феррит. и мартенсит. сталь	120	200		-	8	4	-	-	80	180	De	7.4.1	4	8
IVI	14	Аустенит. нержав. сталь	130	250		•	12		- e.	-	100	200		U.F.		
v	15~16	Серый чугун	120	250	120	270	18	-	1.6	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	112		1540	-	r <u>=</u> n	-	120	270	150	300
N	21~30	Алюминий			-	-	1		-		(+)	-	-	T+	-	
S	31~37	Суперсплавы и Титан	25	45	-	0-6	16		DEV.		20	40			-	-
i i	38~41	Высокотверд. материалы	40	80	40	100	- 4	*	50	100	-	-	50	90	20	-

Фрезерная обработка - Торцевое фрезерование - Пластины

SPMT- 4 вершины, позитивные

SPUN- 4 вершины, позитивные, по стандарту ISO

	C	корость резания							Vc (M	/мин.)					
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG Min	712 Max	YG	713 Max	YG Min	613 Max	YG Min	501 Max	YG!	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	14.	-	-	1=1
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	150	C.	-	-
	10-11	Высоколегирован, сталь	70	150	70	170	100	140	90	130	60	100		-		-
М	12~13	Феррит. и мартенсит. сталь	120	200	(G/T	+	*	-	5±c		80	180	5	-	-	- 8
IVI	14	Аустенит. нержав, сталь	130	250	490	*					100	200				
ĸ	15~16	Серый чугун	120	250	120	270	-		1.40	13		3	180	350	200	350
^	17~18	Высокопрочный чугун	130	220	130	240	+	- 4	1-0	-	-	- 4	120	270	150	300
N	21-30	Алюминий	-		150	÷	-		540	112		*	-		*	1,
S	31~37	Суперсплавы и Титан	25	45	- Q=1 I	- 5 1 5	120		1.0	-9	20	40			-	1-
Н	38~41	Высокотверд, материалы	40	80	40	100	- 2	9	50	100	-	100	50	90	- 4	-

ТОКАРНАЯ ОБРАБОТКА.

ТОКАРНАЯ ОБРАБОТКА

Фрезерная обработка - Торцевое фрезерование - Пластины

Обозначение

PNMU1206ZNN

PNMU - 10 вершин, негативные

Серия	AS	IC	S		
PNMU 1206	36	14.0	5.84		

PNMU

14.0	5.84
	14.0

Артикул 1200... Номенклатурная позиция О: Позиция по доп. заказу

		K30 520	K30			530	H15	, KIS
Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
0.05~0.50	2.10	0535		0596	0645	0671	9 0538	0534

PNMU Общего назначения

RE

(MM)

0.8

	C	корость резания	Vc(м/мин.)													
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	17,47		-	-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	147	- 40	
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		÷	-	-
8.6	12~13	Феррит. и мартенсит. сталь	120	200		-	×	~	-	-	80	180	UB.	+1	-	8
M	14	Аустенит, нержав, сталь	130	250		-			290		100	200		U.S.		100
v	15~16	Серый чугун	120	250	120	270	18	-	- (2)	- 2	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	12		160	-	-	-	120	270	150	300
N	21~30	Алюминий			1.	-	1		-	-		-		Tre-	-	
S	31~37	Суперсплавы и Титан	25	45	, E	J. State	16	-	195	10.0	20	40			-	
H	38~41	Высокотверд. материалы	40	80	40	100	12		50	100		-	50	90	-	-

AOMT

1236

Фрезерная обработка - Фрезерование уступов - Корпуса

Корпус для ADKT, AOMT

Угол в плане: 90°

<W> с хвостовиком Weldon <S> Торцово-цилиндрическая фреза

2 вершины, Позитивные

ZEFP : Количество эффективных режущих кромок

СІСТ : Количество пластин СВDP : Посадочное отверстие

o; c.151 Ед, изм.: мм

Серия	APMX	Обозначение	Арпеул 15000_	DC	ZEFP	w	LF	TYPE	DCON		DCSFMS	PCD1	PCD2	٥
ADKT 1505		YGE90 - ADKT15 - D25Z2W25 - L150	089	25	2	50	150		25	1		145	-	X
		YGE90 - ADKT15 - D30Z3W25 - L150	090	30	3	40	150	Weldon	25	la.	-		-	x
	15.0	YGE90 - ADKT15 - D32Z3W32 - L150	091	32	3	50	150		32	12	10	9.	-	x
		YGE90 - ADKT15 - D40Z4S16 - C	083	40	4	-	40	Торцово- цилинд.	16	20	36	4	4	
		YGE90 - ADKT15 - D50Z5S22 - C	084	50	5		40		22	22	42	Δ,	1	
		YGE90 - ADKT15 - D63Z6S22 - C	085	63	6	7	40		22	22	48	(2)	-	•
		YGE90 - ADKT15 - D80Z7S27 - C	086	80	7		50		27	25	58	12:	-	•
		YGE90 - ADKT15 - D100Z8S32 - C	087	100	8		50		32	26	65	*	÷	•
		YGE90 - ADKT15 - D125Z9S40	088	125	9		63		40	32	80	2	-	x

Винты: 4015-М4Х11 (27100166)

Ключ: Тогх 80-Т15 (27100210)

12.0	YGE90 - AOMT12 - D16Z2W16 - L150	064	16	2	50	150		16		-	-	-	X
	YGE90 - AOMT12 - D25Z3W25 - L150	067	25	3	50	150	Weldon	25	•		*	-	X
	YGE90 - AOMT12 - D32Z4W32 - L150	068	32	4	50	150		32		,	-		X
	YGE90 - AOMT12 - D50Z5S22 - C	082	50	5	4	40	Торцово- цилинд.	22	22	42	à	÷	•
	YGM90 - AOMT12 - D16Z2M08	115	16	2		30		M08		14.8	σ.	-	X
	YGM90 - AOMT12 - D20Z3M10	116	20	3	30	35	Модуль.	M10	1	18	4	=1	X

Винты: 3008-М2.5Хб (27100119)

Ключ: Тогх 80-Т8 (27100208)

Корпус для АРКТ

Угол в плане: 90° 2 вершины, Позитивные

<С> Цилиндрическая фреза DCON -APMX DC-

ZEFP : Количество эффективных режущих кромок CICT : Количество пластин CBDP : Посадочное отверстие

o: c.152

Ед.изм.: мм

DI 111000	до тос о	тверстие								- 1	c. 15	_	Ед.изм	- 1
Серия	APMX	Обозначение	Артикул 15000	DC	ZEFP	w	LF	TYPE	DCON	CBDP	DCSFMS	PCD1	PCD2	Z
		YGE90 - AP10 - D16Z2C16 - L100-C	005	16	2	40	100		16	80	10	-	-	
		YGE90 - AP10 - D16Z2C16 - L120-C	007	16	2	30	120		16	(4)	-		4	
		YGE90 - AP10 - D16Z2C16 - L150-C	009	16	2	40	150		16	1-1	4.		1.	
		YGE90 - AP10 - D16Z2C16 - L200-C	012	16	2	100	200		16	~	W		×	
		YGE90 - AP10 - D20Z2C20 - L250-C	025	20	2	150	250		20	137	<u>Q</u> -	(2)	192	
		YGE90 - AP10 - D20Z3C20 - L100-C	016	20	3	30	100		20	·	9	-	2	
		YGE90 - AP10 - D20Z3C20 - L120-C	018	20	3	40	120		20	175	130	1.30	2	
		YGE90 - AP10 - D20Z3C20 - L150-C	020	20	3	50	150	Цилинд.	20	-	-		ė	
		YGE90 - AP10 - D20Z3C20 - L200-C	023	20	3	100	200		20	de.	-	-81		
APKT	100	YGE90 - AP10 - D25Z3C25 - L100-C	027	25	3	30	100		25	-	-	(=)	*	
1003	10.0	YGE90 - AP10 - D25Z3C25 - L120-C	029	25	3	40	120		25		-	45	3	
		YGE90 - AP10 - D30Z4C25 - L100-C		30	4	30	100		25	-	•	-	12	
		YGE90 - AP10 - D30Z4C25 - L120-C		30	4	30	120		25		1.00			
		YGE90 - AP10 - D32Z4C25 - L100-C	035	32	4	35	100		25	1=	٠			
		YGE90 - AP10 - D32Z4C25 - L150	037	32	4	35	150		25	4.1) ÷	-	ŭ,	
		YGE90 - AP10 - D12Z1W16 - L100-C	001	12	1	30	100		16	4	,±,	1-1	4	
		YGE90 - AP10 - D14Z1W16 - L100-C	003	14	1	30	100		16	-,1	1.2	2	ie.	
		YGE90 - AP10 - D16Z2W16 - L100-C	006	16	2	30	100	Weldon	16	0.	٠	-	0	
		YGE90 - AP10 - D16Z2W16 - L85-C	•	16	2	Ž-	85		16	:00	-3	1.40	-	
		YGE90 - AP10 - D18Z2W16 - L100-C	014	18	2	30	100		16	-	-		4	

145

Фрезерная обработка - Фрезерование уступов - Корпуса

Корпус для АРКТ

Угол в плане: 90° 2 вершины, Позитивные

<S> Торцово-цилиндрическая фреза <W> с хвостовиком Weldon

ZEFP : Количество эффективных режущих кромок CICT : Количество пластин CBDP : Посадочное отверстие

o : c.152 Едизм:мм

Серия	APMX	Обозначение	Артикул 15000	DC	ZEFP	m	LF	TYPE	DCON /TDZ	CBDP	DCSFMS	PCD1	PCD2	۵
		YGE90 - AP10 - D20Z3W20 - L100-C	017	20	3	30	100		20	14	-	100		•
		YGE90 - AP10 - D20Z3W20 - L90-C	124	20	3	40	90		20	12		-2.	-	•
		YGE90 - AP10 - D22Z3W20 - L100-C		22	3	30	100	10.00	20		1.	30		•
		YGE90 - AP10 - D25Z3W25 - L100-C	028	25	3	30	100	Weldon	25	4	-	61	4	•
		YGE90 - AP10 - D25Z4W25 - L100-C		25	4	30	100		25	1	12	6	4	
		YGE90 - AP10 - D32Z4W32 - L150	039	32	4	50	150		32	4	-	æ		X
		YGF90 - AP10 - D40Z4S16-C	4	40	4	1.2	40		16	18	34	16 7	1-50	
		YGF90 - AP10 - D40Z5S16-C	069	40	5	•	40		16	20	36	*	-	•
APKT		YGF90 - AP10 - D50Z6S22-C	070	50	6		40		22	22	42	÷	3	•
1003	10.0	YGF90 - AP10 - D50Z7S22-C	÷	50	7	-	40	Торцово-	22	20	42	-	-	•
		YGF90 - AP10 - D63Z7S22-C	071	63	7	-	40	циониц.	22	22	48	e		
		YGF90 - AP10 - D80Z8S27-C	072	80	8		50		27	25	58	(4)		•
		YGF90 - AP10 - D100Z9S32-C	073	100	9		50		32	26	65	-	-	
		YGM90 - AP10 - D16Z2M08-C	107	16	2		30		M08		14.75		,	•
		YGM90 - AP10 - D20Z3M10-C	108	20	3	7	30		M10		18	5	,	•
		YGM90 - AP10 - D25Z3M12-C	109	25	3	19	35	Модуль.	M12	4	21	(5)	2	•
		YGM90 - AP10 - D32Z4M16-C	110	32	4		35		M16		29		2	•
		YGM90 - AP10 - D40Z5M16-C	111	40	5	-	43		M16	-	29		-	•

Для корпусов диаметром от 10 до 20 мм:

Для корпусов диаметром от 22 до 100 мм:

Винты: 3008-М2.5Х5 (27100118)

Винты: 3008-М2.5Х6 (27100119)

Ключ: Тогх 80-Т8 (27100208)

Ключ: Тогх 80-Т8 (27100208)

Корпус для АРКТ

Угол в плане: 90°

2 вершины, Позитивные

ZEFP : Количество эффективных режущих кромок CICT : Количество пластин CBDP : Посадочное отверстие

o;c.152 Едизм.:мм

Серия	APMX	Oboshayenue	ижулі 200	аст	DC	ZEFP	W	LF	TMI	DCON/TDZ
Dec es	28	YGCM90 - AP10 - D20 - W20 - L87- Z04	103	4	20	2	37	87		20
APKT 1003	28	YGCM90 - AP10 - D20 - W20- L87- Z0206	104	6	20	2	37	87		20
	37.0	YGCM90 - AP10 - D25 - W25 - L105 - Z0208 - C	105	8	25	2	50	105	Weldon	25
	46.0	YGCM90 - AP10 - D32 - W32 - L115 - Z0315 - C	106	15	32	3	55	115		32
	55.0	YGCM90 - AP10 - D40 - W32 - L130 - Z0318 - C	107	18	40	3	70	130		32

Винты: 3008-М2.5Х6 (27100119)

Ключ: Torx 80-Т8 (27100208)

Угол в плане: 75°

2 вершины, Позитивные

			1			-	A!		0:	c.152	Едизм	L:M
Серия	APMX	Обозначение	Артикул 15000	DC	ZEFP	LF	LH	тип	DCON /TDZ	CBDP	DCSFMS	•
		YGF75-AP16-D63-S22-Z4-C	178	63	4	40	22		22	1.6	1.0	•
APKT		YGF75-AP16-D80-S27-Z5-C	179	80	5	50	27		27	1	2	•
1604	6	YGF75-AP16-D100-S32-Z6-C	180	100	6	50	32	Торцово-цилинд.	32	Į.	13	•
		YGF75-AP16-D125-S40-Z7-C	181	125	7	63	40		40			

Винты: 4015-М4Х11 (27100166)

Ключ: Тотх 80-Т15 (27100210)

Корпус для АРКТ

Угол в плане: 90° <S> Торцово-цилиндрическая фреза <W> с хвостовиком Weldon <C> Цилиндрическая фреза

2 вершины, Позитивные

ZEFP : Количество эффективных режущих кромок CICT : Количество пластин CBDP : Посадочное отверстие

o :c.152

Ед. изм.: мм

Серия	APWX	Обозначение	Артикул 15000.	DC	ZEFP	w	LF	TYPE	DCON	CBDP	DCSFMS	PCD1	PCD2	۵
		YGE90 - AP16 - D25Z2C20 - L100	046	25	2	35	100		20		1	100		X
		YGE90 - AP16 - D25Z2C25 - L250	049	25	2	100	250		25			100	-	X
		YGE90 - AP16 - D32Z2C32 - L250	056	32	2	100	250		32				-	X
		YGE90 - AP16 - D32Z3C25 - L200-C	055	32	3	40	200	Цилинд,	25	4	-	-	2,	•
		YGE90 - AP16 - D32Z3C32 - L150	051	32	3	50	150		32	4	1.4	3	1	x
		YGE90 - AP16 - D32Z3C32 - L250	057	32	3	100	250		32	-	20	-		X
APKT 1604	16.0	YGE90 - AP16 - D40Z4C32 - L150	059	40	4	40	150		32	16-		pa.	4	X
		YGE90 - AP16 - D25Z2W25 - L100	047	25	2	35	100		25			-	-	•
		YGE90 - AP16 - D32Z3W25 - L150	052	32	3	35	150	water	25	Te.		æ.	51	•
		YGE90 - AP16 - D32Z3W32 - L150	054	32	3	40	150	Weldon	32	-	-	-		•
		YGE90 - AP16 - D36Z3W32 - L110	14	36	3	40	110		32		17		-	•
		YGF90 - AP16 - D40Z4S16-C	074	40	4	*	40	Торцово-	16	20	36	-	-	•
		YGF90 - AP16 - D50Z5S22-C	075	50	5	-	40	цилинд.	22	20	45		-	

Для корпусов диаметром от 25 до 40 мм:

Для корпусов диаметром от 50 до 200 мм:

Винты: 4015-М4Х9 (27100165)

Винты: 4015-М4Х11 (27100166)

Ключ: Тогх 80-Т15 (27100210)

Ключ: Тогх 80-Т15 (27100210)

▶ Далее

Корпус для АРКТ

Угол в плане: 90° 2 вершины, Позитивные

<М> Модульная DCSFMS TDZ-

ZEFP : Количество эффективных режущих кромок CICT : Количество пластин CBDP : Посадочное отверстие

150	
c.152	Едизм.:ми

7GMill

Серия	APMX	Обозначение	Артикул 15000	DC	ZEFP	w	LF	ТУРЕ	DCON /TDZ	CBDP	DCSFMS	PCD1	PCD2	۵
		YGF90 - AP16 - D50Z5\$22-C	075	50	5	ē	40		22	22	42	-	2	•
		YGF90 - AP16 - D63Z6S22-C	076	63	6	1.	40		22	20	50	543	4	•
		YGF90 - AP16 - D80Z7S27-C	077	80	7	÷	50		27	23	56		.9.	•
		YGF90 - AP16 - D100Z8532-C	078	100	8	-	50	Торцово-	32	26	65		2	•
APKT	160	YGF90 - AP16 - D125Z9S40	179	125	9	4	63	-0.50040	40	32	80	1=,	2	X
1604	16.0	YGF90 - AP16 - D160Z10S40	180	160	10	U	63		40	32	110	66.7	~	X
		YGF90 - AP16 - D200Z12S60	181	200	12		63		60	40	130	101.6	e	X
		YGM90 - AP16 - D25Z2M12-C	112	25	2	÷	43		M12		21			•
		YGM90 - AP16 - D32Z3M16-C	113	32	3		43	Модуль.	M16	*	29	7.	-	•
		YGM90 - AP16 - D40Z4M16-C	114	40	4	-	43		M16	(-)	29	10.	~	•

Для корпусов диаметром от 25 до 40 мм:

Для корпусов диаметром от 50 до 200 мм:

Винты: 4015-М4Х9 (27100165)

Винты: 4015-М4Х11 (27100166)

Ключ: Torx 80-T15 (27100210)

Ключ: Torx 80-T15 (27100210)

Корпус для АРМТ

Угол в плане: 90° <S> Торцово-цилиндрическая фреза <W> с хвостовиком Weldon <C> Цилиндрическая фреза

2 Вершины, Позитивные

ZEFP: Количество эффективных режущих кромок CICT: Количество пластин

ВDР : Посадочное отверстие					o:c.153	Ед, изм.: мм
Conus ADMY	Обозначания	Apneys DC	755D 11)	16	TYPE DOON CROP DOSENS PO	ni pena A

Серия	APMX	Обозначение	Артикул 15000.	DC	ZEFP	w	LF	TYPE	DCON	CBDP	DCSFMS	PCD1	PCD2	٥
		YGE90 - AP1135 - D16Z2C16 - L150	041	16	2	٥	150		16	7-		100	-	•
APMT	10.0	YGE90 - AP1135 - D20Z3C20 - L150	044	20	3	14.	150	Торцово-	20	٠	-	4	-	•
1135	10.0	YGE90 - AP1135 - D25Z3C25 - L200	045	25	3		200	1	25	13.	la.	恩	-	•
		YGE90 - AP1135 - D32Z4W25 - L110		32	4	-	100	Weldon	25	-	-	4	-	•
		YGE90 - AP16 - D25Z2C25 - L100	046	25	2		100	Цилинд.	25	- 4	1	121	47	•
		YGE90 - AP16 - D32Z3W32 - L110	050	32	3	4	110	Weldon	32	-	4	2	-	•
APMT 1604	16.0	YGE90 - AP16 - D50Z5S22-C	075	50	5	-	40		22	20	42	1.0	+	•
		YGE90 - AP16 - D63Z6S22-C	076	63	6		40	Торцово-	22	20	50		-	•
		YGE90 - AP16 - D80Z7S27-C	077	80	7	ve.	50	4.0	27	23	56	· ·	÷	•

Для корпусов под пластины АРМТ1135:

Для корпусов под пластины АРМТ1604:

Винты: 4015-М4Х9 (27100165)

Винты: 4015-М4Х11 (27100166)

Ключ: Тогх 80-Т8 (27100208)

Ключ: Torx 80-T15 (27100210)

Корпус для TPKN, TPKR, TPCN

Угол в плане: 90°

3 Вершины, Позитивные ISO

<S> Торцово-цилиндрическая фреза

ZEFP: Количество эффективных режущих кромок

CICT : Количество пластин CBDP : Посадочное отверстие

0	: c.1	54
---	-------	----

Ед изм.: мм

Серия	APMX	Обозначение	Артикул 15000.	DC	ZEFP	LU	LF	TYPE	DCON	CBDP	DCSFMS	PCD1	PCD2	(
		YGF90 - TP16 - D50Z4S22	228	50	4	Ą	40		22	22	42	r - n	-	>
TPKN TPKR	100	YGF90 - TP16 - D63Z6S22	229	63	6	2	45	Торцово-	22	22	48	3 - 0	(4)	3
TPCN 1603	12.0	YGF90 - TP16 - D80Z7S27	230	80	7	-	50	цилинд.	27	25	58	(<u>-</u>)	(5)	1
1003		YGF90 - TP16 - D125Z8S40	232	125	8	-	63		40	32	80	-	-	1
		YGF90 - TP22 - D63Z5S22 - WOC	233	63	5	4	45		22	22	48	18	Œ	
		YGF90 - TP22 - D80Z6S27 - WOC	234	80	6		50		27	25	58	0	- 40	10.7
LL.		YGF90 - TP22 - D100Z7S32 - WOC	235	100	7	13	50		32	26	65	10.33	3-	- SA
TPKN TPKR	100	YGF90 - TP22 - D125Z8S40 - WOC	236	125	8		63	Торцово-	40	32	80	-	-	0.0
TPCN 2204	18.0	YGF90 - TP22 - D160Z9S40 - WOC	237	160	9	R	63	цилинд.	40	32	110	66.7		
		YGF90 - TP22 - D200Z12S60 - WOC	238	200	12	(9)	63		60	40	130	101,6	-	200
		YGF90 - TP22 - D250Z15S60 - WOC	239	250	15	19	63		60	40	160	101.6	2	300
		YGF90 - TP22 - D315Z18S60 - WOC	240	315	18	-	63		60	40	220	101.6	177.8	

Для корпусов под пластины ТР..1603.. диаметром 50 мм:

Для корпусов под пластины ТР..1603.. диаметром 63 мм:

Для остальных корпусов под пластины ТР..1603..:

Для остальных корпусов под пластины ТР..2204..:

Винты: AKV-22-M8X1X14 (27100055)

Ключ: ААL-05-4 (27100200)

Ключ: ААL-05-4 (27100200)

Ключ: ААL-05-4 (27100200)

Ключ : ААL-05-4 (27100200)

назнач

Фрезерная обработка - Фрезерование уступов - Пластины

ADKT / AOMT - 2 вершины, позитивные

ĺ	Серия	LE	IC	S
ſ	ADKT 1505	13.7	9.7	5.8
	AOMT 1236	10.5	6.6	3.6

Артикул 1200... : Номенклатурная позиция О: Позиция по доп. заказу

P30 M35

P20

A	OKT	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG712	YG613	YG501	YG5020
ADKT		ADKT 150508 PDTR	0.8	0.16~0.30	1.87	0220						
Общего назначения												

AOMT	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG712	YG613	YG501	1020Z0
	AOMT 123604 PDTR	0.4	0.08~0.22	1.07	0217						
AOMT	AOMT 123608 PDTR	0.8	0.08~0.24	0.91	0218						
Общего назначения											

	C	корость резания							Vc (M	/мин.)					
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG Min	712 Max	YG	713 Max	YG Min	613 Max	YG Min	501 Max	YG5	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	16.	-	-	1-1
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	==	C.	-	-
	10-11	Высоколегирован, сталь	70	150	70	170	100	140	90	130	60	100		-	-	-
8.0	12~13	Феррит. и мартенсит. сталь	120	200	1,50	-	~	~	2-0	9	80	180	7-1	-	-	8
M	14	Аустенит. нержав, сталь	130	250					- 40		100	200				
v	15~16	Серый чугун	120	250	120	270			1.57	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	-		1-0.	-	n=	-	120	270	150	300
N	21-30	Алюминий		+	1		-		- - -	-	-		-	-	4	-
S	31~37	Суперсплавы и Титан	25	45	g=1				(4)	- 9	20	40				-
H	38~41	Высокотверд. материалы	40	80	40	100			50	100		- 40	50	90		-

Фрезерная обработка - Фрезерование уступов - Пластины

АРКТ-2 вершины, позитивные

	Серия	LE	IC	S
Ī	APKT 1003	9.9	6.7	3.6
	APKT 1604	15.2	9.4	5.3

Артикул 1200...

Номенклатурная позиция
 Позиция по доп. заказу

P40

					M30	K30	P20	P30	M35	K15	K15	N15
					520	10000	-		_	H15	Į	
APKT	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020	YG50
	APKT 100305 PDTR	0.5	0.15~0.24	0.86	0005	0429		0638				
	APKT 100308 PDTR	0.8	0.15~0.24	0.90	0004	0430		0632				
APKT 🔽	APKT 160404 PDTR	0.4	0.15~0.25	1.11	0003							
Общего	APKT 160408 PDTR	0.8	0.15~0.30	1.32	0001			• 0633				
назначения	APKT 160412 PDTR	1.2	0.15~0.32	1.13	0002							
	APKT 160416 PDTR	1.6	0.15~0.34	1.13	0006							
	APKT 160424 PDTR	2.4	0.15~0.38		0255							
-ST	APKT 100305-ST	0.5	0.08~0.22	0.86	0278							
Нержавеющ.	APKT 160408 - ST	0.8	0.08~0.25	1.32	0270							
суперсплавы												
	APKT 160404-TR	0.4	0.26~0.40	2.12	0492	0505						
-TR	APKT 160408-TR	0.8	0.26~0.40	1,32	0256	0337						
Закаленная	APKT 160412-TR	1,2	0.26~0.40	2,40	0493	0523						
сталь	APKT 160416-TR	1.6	0.26 ~ 0.40	2.40	0472	0524						
	APKT 160424-TR	2.4	0.26~0.40	1.50	0494	0520						
-AL	APKT 100305 - AL	0.5	0.08~0.22	0.86								O 0235
Алюминий	APKT 160408 - AL	0.8	0.08~0.25	1.32								0236

	Ско	рость резания								Vc (M	/мин.	.)						
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG Min	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	020 Max	YG Min	550 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	1.	1.51	-	(=)		- 5
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	10-0	- 1	- 4	-	3.0	-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	10	.91	2	4	1.8	
М	12~13	Феррит. и мартенсит. сталь	120	200	7	-	~	-			80	180	0-		9	-	-	->0
IAI	14	Аустенит. нержав. сталь	130	250	>€					•	100	200		9				
ĸ	15~16	Серый чугун	120	250	120	270	-	-	-	-	-	-	180	350	200	350	1.5	H)
•	17~18	Высокопрочный чугун	130	220	130	240		100	-	- 2	1/2/	-	120	270	150	300	3	- 2
N	21~30	Алюминий		+	14			(*)	-			-	-				300	800
S	31~37	Суперсплавы и Титан	25	45) <u>4,</u>	-	-	-	-	-	20	40			2	14	-	
H	38~41	Высокотверд. материалы	40	80	40	100	9	-	50	100	-	*	50	90	-	140	15	-

Общего

Фрезерная обработка - Фрезерование уступов - Пластины

АРМТ - 2 вершины, позитивные

АРХТ - 2 вершины, позитивные

	C	корость резания							Vc (M	/мин.)					
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG	712 Max	YG	713 Max	27.00	613	YG	77.5		5020
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	MIn 90	Max 230	Will	Max	Min	Max
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	- 5 -		-	-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	.e.	-	-	-
	12~13	Феррит. и мартенсит. сталь	120	200	1,19/=	4	~	-	340	- 4	80	180		-	-	-
M	14	Аустенит. нержав, сталь	130	250	190				- 20		100	200				-
	15~16	Серый чугун	120	250	120	270	-		1.4.7	1,2	-	3	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	-	- 4	1-0	-	-		120	270	150	300
N	21-30	Алюминий		÷	1.5		- 25		300	12	-	-	-	-		
S	31~37	Суперсплавы и Титан	25	45	g=1	_5 <u>4</u> 5	120		1.40	161	20	40			-	12
H	38~41	Высокотверд. материалы	40	80	40	100	- 81	-	50	100		- 60	50	90	-	-

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА

АНТИВИБ, ОПРАВКИ

MHOOPMALING

Фрезерная обработка - Фрезерование уступов - Пластины

TPKN / KR / CN - 3 вершины, позитивные, по стандарту ISO

Серия	KRINS	IC	S
TP** 1603	90°	9.53	3.18
TP** 2204	90°	12.70	4.76

Артикул 1200...

●: Номенклатурная позиция

○: Позиция по доп. заказу

P30 M35

					K30 S20	K30		100	\$30	H15	
TPKR TPKN TPCN	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
7	TPKR 1603 PDTR		0.15~0.28	1.2	0060						
TPKR	TPKR 1603 PDTR-PW		0.11 ~ 0.20	1.2	0300						
Общего назначения	TPKR 2204 PDTR		0.18~0.35	1.7	0061						
	TPKR 2204 PDTR -PW		0.18~0.35	1.7	0301						
	TPKN 1603 PDTR		0.15~0.30	1.2	0062						
	TPKN 1603 PDTR-GW		0.15~0.30	1.6	0306						
TPKN	TPKN 1603 PDTR-PW		0.15~0.28	1,2	0302						
Твердые материалы	TPKN 2204 PDTR	7	0.17~0.30	1.7	0063						
	TPKN 2204 PDTR-GW	DDA	0.24~0.40	2.5	0307						
	TPKN 2204 PDTR-PW		0.24~0.40	1.7	0303						
TOCH 4	TPCN 2204 PDSR-M		0.05 ~ 0.20	1.76	- 11		0180				
ТРСN Шлифован-	TPCN 2204 PDSR -MR		0.05 ~ 0.20	1.76			0202				
ная пластина											

- PW : улучшенное качество поверхности
- GW : Геометрия Wiper
- М : для штампов и пресс-форм
- MR : для черновой об-ки штампов и пресс-форм

	Ско	рость резания								VC (M	/MNH	.)						
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG Min	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG!	5020 Max	YC Min	350 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	1.0	100	+		17-	-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	40	- 4	- 2		130	-
	10~11	Высоколегирован, сталь	70	150	70	170	100	140	90	130	60	100	-	7	-	+	-9	-9-
М	12~13	Феррит. и мартенсит. сталь	120	200	1.0	4	~	-	1,91	-	80	180		-	-	+	~	-
IVI	14	Аустенит, нержав, сталь	130	250				15	· y	1.	100	200	-		•	*	-	7
ĸ	15~16	Серый чугун	120	250	120	270	4	-	ė	-	-	-	180	350	200	350	÷	*
n	17~18	Высокопрочный чугун	130	220	130	240	- 2	-	(ner)	-12	12	18	120	270	150	300	14.	-
N	21~30	Алюминий		-					1000	1.5	-		-				300	800
S	31~37	Суперсплавы и Титан	25	45		19	8/	+	-	Q-E	20	40			-	-		-
Н	38~41	Высокотверд. материалы	40	80	40	100	-	- 12	50	100		-	50	90	-			2

Фрезерная обработка - Фрезерование уступов - Пластины

TPUN - 3 вершины, позитивные, по стандарту ISO

110 1				TPUN 1	603		9.5	3	3.1	8
R	- s -				•:	Номе Э:По	нкла	гурна	кул 12 я поз цоп. за	иция
1				M30 K30 520	P30 K30		P30	P40 M35		K15
53	DE.	6	ne	520 ≾	≾	×	ĭ	530	H15	Υœ

Серия

IC

	C	корость резания							VC (M	/мин.)					
ISO	VDI	Подгруппа	YG	602	YG	622	YG	712	YG	713	YG	613	YG	501	YG	5020
~	101	подгруппа	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	180	-		10
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	150	0.6	-	-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	- 2
	12~13	Феррит. и мартенсит. сталь	120	200	1,5	-	~	-	240	- 9	80	180	100	-	-	- 8
M	14	Аустенит. нержав, сталь	130	250		*			- 45		100	200				-
v	15~16	Серый чугун	120	250	120	270			1.57	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240			-	-	14	-	120	270	150	300
N	21-30	Алюминий		-	-	-			5.00	-	-			-		-
S	31~37	Суперсплавы и Титан	25	45	3-1	040			(4)	2.0	20	40			-	-
Н	38~41	Высокотверд, материалы	40	80	40	100			50	100	-	45	50	90	- 1	14

7/GMill

o:c.159

M12

Едизм.:мм

Фрезерная обработка - Копировальное фрезерование - Корпуса

Корпус для RDKT, RDKW

ZEFP : Количество эффективных режущих кромок CBDP : Посадочное отверстие

YGER - RDKT08 - D25Z3M12

Серия	APMX	Обозначение	Артикул 15000	DC	DCX	ZEFP	W	LF	TYPE	DCON /TDZ	CBDP	DCSFMS	
		YGER-RDKT08-D16Z2C16-L160	16	8	16	2		160		16	-	7	•
RDKT		YGER - RDKT08 - D20Z2C20 - L180	16	12	20	2	U	180	Цилиндр.	20	_	4	
		YGER - RDKT08 - D25Z3C20 - L180	16	17	25	3	4	180		20	41		
0802	4.0	YGER - RDKT08 - D16Z2M08	16	8	16	2	-	23	L.	M08	-	13	•
		YGER - RDKT08 - D20Z2M10	5	12	20	2		30	Модульн.	M10		18	•

Для корпусов под пластины RD..10T3.. диаметром до 50 мм: Для корпусов под пластины RD..10T3.. диаметром от 50 мм: Для корпусов под пластины RD..1204.. диаметром до 40 мм: Для корпусов под пластины RD..1204.. диаметром от 40 мм:

Винты: 4015-M3.5X9 (27100150) Винты: 4015-M3.5X11 (27100152

Винты : 4015-М3.5Х9 (27100150)

Винты : 4015-М3.5Х11 (27100152)

Ключ: Torx 80-Т15 (27100210)

X Ключ: Torx 80-T15 (27100210)

Ключ: Torx 80-T15 (27100210)Ключ: Torx 80-T15 (27100210)

Фрезерная обработка - Копировальное фрезерование - Корпуса

Корпус для RDKT, RDKW

Круглые, Позитивные

< W> с хвостовиком Weldon < C> Цилиндрич. фреза < M> Модульная

ZEFP: Количество эффективных режущих кромок

CBDP : Посадочное отверстие

o;c,159

Едизм.:мм

27.00	A commence of	40° 14° 170° 40°										=306.6	
Серия	APMIX	Обозначение	Артикул 15000	DC	DCX	ZEFP	w	LF	TYPE	DCON /TDZ	CBDP	DCSFMS	
		YGER - RD10T3 - D20Z2W20 - L150	163	10	20	2	60	150		20	•	-	>
		YGER - RD10T3 - D25Z2W25 - L150	164	15	25	2	60	150	Weldon	25	-	- 4	>
		YGER - RD10T3 - D32Z3W32 - L150	165	22	32	3	60	150		32]-4	15	,
10T3	5.0	YGFR - RD10T3 - D40Z5S16-C		30	40	5	4.1	40		16	18	34	•
		YGFR - RD10T3 - D50Z5S22-C	125	40	50	5		50	Торцово-	22	22	42	•
		YGFR - RD10T3 - D63Z6S22-C	126	53	63	6	91	50	1 4	22	22	48	
RDKT RDKW		YGE - RD12T3 - D32Z3C32 - L160	166	20	32	3	70	160	Цилиндр.	32	-	- -	>
		YGE - RD12T3 - D32Z3W32 - L160	167	20	32	3	50	160	Weldon	32	-		2
		YGF - RD12T3 - D40Z4S16-C	127	28	40	4	4	40	TT	16	18	34	•
		YGF - RD12T3 - D50Z5S22-C	128	38	50	5	×	50		22	22	42	
PDKT		YGF - RD12T3 - D52Z5S22-C	129	40	52	5	2	50		22	22	42	•
RDKW	6.0	YGF - RD12T3 - D63Z6S22-C	130	51	63	6	M	50	Торцово-	22	20	48	
1204		YGF - RD12T3 - D80Z7S27-C	131	68	80	7	.,	50	7	27	25	58	•
		YGF - RD12T3 - D100Z7S32-C	132	88	100	7	-	50		32	26	65	
		YGF - RD12T3 - D100Z8S32-C	133	88	100	8	-6.	50		32	26	65	
		YGM - RD12T3 - D32Z3M16-C	169	20	32	3	T.	42	6.14	M16	-	29	
		YGM-RD12T3-D42Z4M16-C	170	30	42	4	4	43	Модуль.	M16		29	•

Для корпусов под пластины RD..10T3.. диаметром до 50 мм:

Для корпусов под пластины RD..10T3.. диаметром от 50 мм:

Для корпусов под пластины RD..1204.. диаметром до 40 мм:

Для корпусов под пластины RD..1204.. диаметром от 40 мм:

Винты: 4015-М3.5Х9 (27100150)

Винты: 4015-М3.5Х11 (27100152

Винты: 4015-М3.5Х9 (27100150)

Винты: 4015-М3.5Х11 (27100152)

Ключ : Torx 80-T15 (27100210)

Ключ : Torx 80-T15 (27100210)

Ключ : Torx 80-T15 (27100210)

Ключ : Torx 80-T15 (27100210)

Фрезерная обработка - Копировальное фрезерование - Корпуса

Корпус для RPMT, RPMW

Круглые, Позитивные

< W> с хвостовиком Weldon < C> Цилиндрич. фреза < M> Модульная

<S> Торцовоцилиндрическая фреза

ZEFP: Количество эффективных режущих кромок CBDP: Посадочное отверстие

$\overline{}$	1	
0	:c.161	Едизм.:м

76Mill

SUP: Hoca,	цочное о	тверстие								_	.161	ЕДИЗМ	
Серия	APMX	Обозначение	Артикул 15000	DC	DCX	ZEFP	w	LF	TYPE	DCON /TDZ	ŒDP	DCSFMS	
RPMT		YGER - RP08T2 - D20Z2W20 - L150-C	182	12	20	2	60	150	Moldon	20	-	1	
RPMW	4.0	YGER - RP08T2 - D25Z3W25 - L200-C	183	17	25	3	100	200	vveidon	25	-	-	
08T2		YGMR - RP08T2 - D20Z2M10-C	187	12	20	2	1-3	30	Модуль.	M10	9	160	I
RPMT		YGER - RP10T3 - D25Z2W25 - L200-C	184	15	25	2	100	200	Weldon	25	4	4	
RPMW	5.0	YGMR - RP10T3 - D25Z2M12-C	188	15	25	2	H	35		M12	8	21	
10T3		YGMR - RP10T3 - D32Z3M16-C	189	22	32	3		43	і і і і і і і і і і і і і і і і і і і	M16	4	29	
		YGER - RP1204 - D32Z3W32 - L150-0	185	20	32	3	2 60 150 Weldon 25 - 2 - 30 Модуль. М10 - 2 100 200 Weldon 25 - 35 Mодуль. М12 - 3 60 150 Weldon 32 - 3 100 200 Weldon 32 - 4 - 50 Topuobo- 5 - 50 Цилинд 22 22 4 6 - 50 27 25 5 3 - 43 Модуль. М16 - 3	3.5					
		YGER - RP1204 - D32Z3W32 - L200-0	186	20	32	3	100	200	weidon	32	3	*	
		YGFR - RP1204 - D50Z4S22-C	192	38	50	4	*	50		22	22	42	
RPMT		YGFR - RP1204 - D52Z5S22-C	193	40	52	5	-	50	Торцово-	22	22	42	
1204	6.0	YGFR - RP1204 - D63Z5S22-C	194	51	63	5	13	50	цилинд.	22	22	48	
		YGFR - RP1204 - D80Z6S27-C	195	68	80	6	4	50		27	25	58	
		YGMR - RP1204 - D32Z3M16-C	190	20	32	3	-	43	Manage	M16		29	
		YGMR - RP1204 - D40Z4M16-C	191	28	40	4		43	модуль.	M16	40	29	

Для корпусов под пластины RP.08T2..:

Для корпусов под пластины RP..10T3..:

Для корпусов под пластины RP.1204. до 50 мм:

Для корпусов под пластины RP..1204..от 50 мм:

Винты: 3008-М2.5Х6 (27100119)

Винты: 4015-М3.5Х9 (27100150)

Винты: 4015-М4Х9 (27100165)

Винты: 4015-М4Х11 (27100166)

Ключ: Torx 80-Т8 (27100208)

Жлюч: Torx 80-T15 (27100210)

Жлюч: Torx 80-T15 (27100210)

Жлюч: Тогх 80-Т15 (27100210)

Фрезерная обработка - Копировальное фрезерование - Пластины

RDKT / W - круглые, позитивные

Серия	INSD	S	Серия	INSD	S
RDK* 0501	5	1.4	RDK* 10T3	10	4.0
RDK* 0702	7	2.4	RDK* 1204	12	4.8
RDK* 0802	8	2.4	-		

Артикул 1200...

●: Номенклатурная позиция

○: Позиция по доп. заказу

			M30 K30 S20	K30	P20	P30	M35	K15	K15
RDKT RDKW	Обозначение	Fz (мм/зуб)	YG602	YG622	YG712	YG712	YG613	H YG501	YG5020
	RDKT 0802M0	0.15~0.25	0035						
RDKT 🔊	RDKT 10T3M0	0.15~0.28	0041	i.					
Общего назначения	RDKT 1204M0	0.20~0.30	0034			0635			
_	RDKT 1604M0	0.30~0,60	0539						
	RDKT 0802M0 - ST	0.08~0.25	0292						
-ST	RDKT 10T3M0-ST	0.08~0.28	0293						
Нержавеющ. сталь, суперсплавы	RDKT 1204M0 - ST	0.10~0.30	0294						
. i									
	RDKT 0802M0 - TR	0.18~0.35	0284	0339					
-TR	RDKT 10T3M0-TR	0.22~0.40	0285	0338					
Закаленная сталь	RDKT 1204M0 - TR	0.22~0.40	0272	0340					
	RDKW 0501M0	0.10~0.20	0207	0412					
10000	RDKW 0702M0	0.12~0.25		0439					
RDKW Твердые	RDKW 0802M0	0.13~0.25		0440					
материалы	RDKW 10T3M0	0.16~0.30	•	0441					
	RDKW 1204M0	0.16~0.35	•	0442					

	C	корость резания							Vc (M	/мин.)					
ISO	O VDI Подгруппа		1,000	602 Max	17.07	622 Max	YG	712	7.7	713 Max	27.76	613	YG	224.5	1000	5020
	1~5	Нелегированная сталь	MIn 140	380	Min 140	400	170	300	Min 150	280	MIn 90	Max 230	Will	Max	Min	Max
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-			
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	- 2
	12~13	Феррит. и мартенсит. сталь	120	200	16	4	~	*	nie.	- 4	80	180	-	-	-	
M	14	Аустенит. нержав, сталь	130	250	190				- 1		100	200	-			-
	15~16	Серый чугун	120	250	120	270	180		1	1,2	-	3	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	-		190	-	-	-	120	270	150	300
N	21-30	Алюминий	-	- +	1.20	4	- 26				4		-	-		
S	31~37	Суперсплавы и Титан	25	45	q= 1	- 5 <u>4</u> , 1	120		1.40	_ 611	20	40				12
H	38~41	Высокотверд, материалы	40	80	40	100	- 2		50	100	-	- 40	50	90	- 4	-

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА ДЕРЖАВКИ

ТОКАРНАЯ ОБРАБОТКА АНТИВИБ, ОПРАВКИ

Фрезерная обработка - Копировальное фрезерование - Пластины

RDMT / W - круглые, позитивные

Серия	INSD	S	Серия	INSD	S
RDM* 0802	8	2.38	RDM* 10T3	10	3.97
RDM* 0803	8	3.18	RDM* 1204	12	4.76

Артикул 1200...

●: Номенклатурная позиция

○: Позиция по доп. заказу

P30 M35

			520	K30			530	H15	
RDMT RDMW	Обозначение	Fz (mm/3y6)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
	RDMT 0802M0	0.15~0.25	0245						
RDMT	RDMT 0803M0	0.15~0.25	0225						
Общего назначения	RDMT 10T3M0	0.18~0.28	0246						
	RDMT 1204M0	0.2~0.3	0226						
	RDMW 0802M0	0.05 ~ 0.15	0227						
RDMW	RDMW 10T3M0	0.1 ~ 0.25	0228						
Твердые материалы	RDMW 1204M0	0.16~0.3	0229						
								7.7.1	

	C	корость резания							Vc(M	мин.)						
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG	712 Max	YG Min	713 Max	YG Min	613 Max	YG	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	17,47	-	-	-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	4	- 40	
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	-
	12~13	Феррит. и мартенсит. сталь	120	200		-	8		-	-	80	180	1.19	7.4.1	-	*
M	14	Аустенит, нержав, сталь	130	250		•			-2.		100	200	-	o €	-	
	15~16	Серый чугун	120	250	120	270	14	-	- 65	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	19		100	-	100	100	120	270	150	300
N	21~30	Алюминий	9		1.2	-	150		-	1.47		-	-	Tre i	-	
S	31~37	Суперсплавы и Титан	25	45	-	_def	16		(5-7)	-	20	40			-	-
	38~41	Высокотверд, материалы	40	80	40	100	12	- 2	50	100	-	-	50	90	-	- 4

Фрезерная обработка - Копировальное фрезерование - Пластины

RPMT / W - круглые, позитивные

Серия	INSD	S	Серия	INSD	S
RPM* 08T2	8	2.78	RPM* 10T3	10	3.97
RPM* 1003	10	3.18	RPM* 1204	12	4.76

Артикул 1200...

●: Номенклатурная позиция

○: Позиция по доп. заказу

			K30	K30			S30	H15	
RPMT RPMW	Обозначение	Fz (мм/зуб)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
	RPMT 08T2M0	0.10~0.24	0038						
RPMT 🛜	RPMT 10T3M0	0.16~0.30	0036	-					
Общего назначения	RPMT 1204M0	0.20~0.35	0037	0401	0415		0463	0462	
-ST Нержавеющ.	RPMT 1204M0 - ST	0.10~0.30	0230				0667		
сталь, суперсплавы									
S. S. S.	RPMW 1003M0	0.16~0.30	0204	0402					
RPMW Твердые материалы	RPMW 1204M0	0.16~0.35	0039						

	C	Vc (м/мин.)														
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG Min	712 Max	YG	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	18	-	-	1-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	198	G.	-	-
	10-11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	-
М	12~13	Феррит. и мартенсит. сталь	120	200	(G) =	-	~	~		91	80	180	-	-	-	
IVI	14	Аустенит. нержав, сталь	130	250	100	*			- 45		100	200				-
v	15~16	Серый чугун	120	250	120	270			1.57	-	-		180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240			-		-	2	120	270	150	300
N	21-30	Алюминий		- +	-	-	-				-		-	-	-	-
S	31~37	Суперсплавы и Титан	25	45	g=1				(4)	- 2	20	40			-	58
H	38~41	Высокотверд. материалы	40	80	40	100	181		50	100		- 10	50	90	- 4	-

ТОКАРНАЯ ОБРАБОТКА.

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА АНТИВИБ, ОПРАВКИ

Фрезерная обработка - Копировальное фрезерование - Пластины

RBEX50 - Профилирование / Высокая подача, 3 вершины

Обозначение

RBEX 50

CEMR	IC	S
25	12.7	5.55
	-	

Артикул 1200...

●: Номенклатурная позиция

○: Позиция по доп. заказу

MSU		P20	P30	M35	VI2	K15
K30 520	K30	720	rsu	530	H15	KIS
YG602	YG622	YG712	YG713	YG613	YG501	YG5020
O 0277	O 0443					

RBEX50Общего назначения

RBEX50

RE

(MM)

1.2

Fz

(MM/3y6)

0.2~0.4

	Скорость резания		Vc(м/мин.)													
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	17,47		-	
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	(4)		-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	+
	12~13	Феррит. и мартенсит. сталь	120	200	-	-	~	~		-	80	180	Lie	+	-	8
M	14	Аустенит, нержав, сталь	130	250	12		-		290		100	200		7.5		1.0
v	15~16	Серый чугун	120	250	120	270	4	-	-	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	12	- 2	- (4)	-	-	-	120	270	150	300
N	21~30	Алюминий	-		14	-	-		-	1.47		-	-	Tie.	-	-
S	31~37	Суперсплавы и Титан	25	45	, é	Del 1	16		5-7	10.0	20	40			-	
H	38~41	Высокотверд. материалы	40	80	40	100	4		50	100	-	-	50	90	-	

Фрезерная обработка - Фрезерование с высокими подачами - Корпуса

Корпус для ENMX

Угол в плане: 10° 4 вершины, Негативные <S> Торцово-цилиндрическая фреза <C> Цилиндрическая фреза <M> Модульная

ZEFP : Количество эффективных режущих кромок

DP : Noca	дочное о	тверстие								o: c.	o: c.167		:MM
Серия	APMX	Обозначение	Артикул 1700	DC	DCX	ZEFP	UF	Туре	DCON /TDZ	LH	CBDP	DCSFMS	
		EHF-ENMX06-D16Z2C16-L100	0644	9.0	16	2	100		16	30	7,1	16-1	•
		EUE ENMYNE D1672C16 150	OSAE	00	16	2	150		16	50			

серия	APMA	Ооозначение	1700.	UK.	DCA	ZEPP		type	/TDZ		LBUP	DCOMMO	
		EHF-ENMX06-D16Z2C16-L100	0644	9.0	16	2	100		16	30	÷	[G.]	•
	0.9	EHF-ENMX06-D16Z2C16-L150	0645	9.0	16	2	150	1 hanner	16	50	-	-	
	0.9	EHF-ENMX06-D17Z2C16-L100	0674	10.0	17	2	100	Цилинд.	16	20	-30		•
		EHF-ENMX06-D17Z2C16-L150	0473	10.0	17	2	150		16	20		-	
		EHF-ENMX06-D20Z3C20-L130	0463	12.6	20	3	130		20	50	·	C=0	•
		EHF-ENMX06-D20Z3C20-L160	0646	12.6	20	3	160		20	80	21	-	•
		EHF-ENMX06-D21Z3C20-L150	0475	13.6	21	3	150		20	20	(4)	9.	•
		EHF-ENMX06-D21Z3C20-L200	0476	13.6	21	3	200		20	20		-	•
		EHF-ENMX06-D25Z4C25-L140	0647	17.6	25	4	140		25	60	+-	-	•
	1	EHF-ENMX06-D25Z4C25-L180	0464	17.6	25	4	180	Цилинд.	25	80	*	-	
		EHF-ENMX06-D25Z4C25-L250	0648	17.6	25	4	250		25	120	-	12.1	•
		EHF-ENMX06-D26Z4C25-L150	0479	18.6	26	4	150		25	30	21	-	
ENMX 0604		EHF-ENMX06-D26Z4C25-L200	0480	18.6	26	4	200		25	30	19	19.1	
		EHF-ENMX06-D32Z5C32-L150	0649	24.6	32	5	150		32	70	-	-	•
		EHF-ENMX06-D32Z5C32-L200	0465	24.6	32	5	200		32	100	4	- 1-0	
	00	MHF-ENMX06-D16Z2M08	0691	9.0	16	2	23		M08		-	13	•
	0.9	MHF-ENMX06-D18Z2M08	0730	11.0	18	2	23	Модуль.	M08		-5.	13	•
		MHF-ENMX06-D20Z3M10	0692	12.6	20	3	30		M10		9	18	
		MHF-ENMX06-D25Z4M12	0693	17.6	25	4	35		M12		93	21	
		MHF-ENMX06-D32Z5M16	0694	24.6	32	5	42		M16		- 20	29	•
	-1	MHF-ENMX06-D35Z5M16	0695	27.6	35	5	42	Модуль.	M16		7-	29	•
		MHF-ENMX06-D40Z6M16	0732	32.6	40	6	42		M16		-	29	•
		MHF-ENMX06-D42Z6M16	0696	34.6	42	6	42		M16		-5	29	•
		FHF-ENMX06-D40Z6S16	0482	32.6	40	6	40		16		18	37	•
	1	FHF-ENMX06-D50Z6S22	0471	42.6	50	6	50	Торцово- цилиндр.	22		25	42	

Ключ: TPWBTP08 (18000218)

Фрезерная обработка - Фрезерование с высокими подачами - Корпуса

Корпус для ENMX

Угол в плане: 10° 4 вершины, Негативные <S> Торцово-цилиндрическая фреза <C> Цилиндрическая фреза <M> Модульная

7GMill

ZEFP: Количество эффективных режущих кромок

		фективных режущих кромок отверстие								0:0	.167	Едиза	A :1
Серия	APMX	Обозначение	Артикул 1700	DC	DCX	ZEFP	LF	Type	DCON /TDZ	LH	CBDP	DCSFMS	K
		EHF-ENMX09-D25Z2C25-L150	0745	20	25	2	150		25	70	-	-	•
		EHF-ENMX09-D26Z2C25-L200	0746	21	26	2	200		25	30	-	-	
		EHF-ENMX09-D26Z3C25-L200	0747	21	26	3	200		25	30	-	-	1
		EHF-ENMX09-D32Z3C32-L160	0748	27	32	3	160	Цилиндрич.	32	70	-		0
		EHF-ENMX09-D33Z3C32-L200	0749	28	33	3	200		32	30	1.51		
		EHF-ENMX09-D33Z4C32-L200	0750	28	33	4	200		32	40	-	J. Parl	
		EHF-ENMX09-D40Z5C32-L180	0751	35	40	5	180		32	40	7	-	
		FHF-ENMX09-D50Z3S22	0820	45	50	3	50		22		20	42	I
NMX 0905	1.5	FHF-ENMX09-D50Z4S22	0821	45	50	4	50		22	-	20	42	
7.7		FHF-ENMX09-D50Z5S22	0752	45	50	5	50		22	12	20	42	
		FHF-ENMX09-D63Z4S22	0822	57	63	4	50		22		20	48	
		FHF-ENMX09-D63Z5S22	0823	57	63	5	50	Торцово- Цилиндрич	22	25	20	48	
		FHF-ENMX09-D63Z6S22	0753	57	63	6	50		22	-	20	48	
		FHF-ENMX09-D63Z7522	0754	57	63	7	50		22	8.	20	48	I
		FHF-ENMX09-D80Z8S27	0755	74	80	8	50		27	-	23	56	
		FHF-ENMX09-D100Z10S32	0824	84	100	10	63		32	-	26	78	
		FHF-ENMX09-D125Z12S40	0825	109	125	12	63		40		28	89	

Винты: TP093510 GS (18000214)

Ключ: TPWBTP09 (18000216)

Фрезерная обработка - Торцевое фрезерование - Корпуса

Пластины ENMX - техническая информация

ENMX 0604

DCX Максдиам. резания	APMXR	RP Программир. радиус	UTCN	Зарез
16	3.5	R2.0	0.31	0.00
16~	3.7	R2.5	0.18	0.18
		R3.0	0.07	0.36

н	Общего азначения	Плун- жерение	Врезание под углом	Копирова фрезеров			интовая ерполяция		веровывание верстия
DCX Диаметр фрезерования	АРМХ Максимальн. Глубина резания	АРМХЯ Макс. радиальная Глубина резания	RMPX Макс. угол врезания	RP Программир. радиус	UTCN	Diameter Минимальный диаметр	Diameter Максимальный диаметр	Pitch Шаг интерполяц	Ае Ширина увеличения
16	0.9	3.5	3.5°	R2.0	0.3	21	30	0.9	12.5
20	1	3.7	1.8°	R2.0	0.31	29	38	1	16.3
25	1	3.7	1.2°	R2.0	0.31	39	48	1	21.3
32	1	3.7	0.8°	R2.0	0.31	53	62	1	28.3
40	1	3.7	0.6°	R2.0	0.31	69	78	1	36.3
50	1	3.7	0.5°	R2.0	0.31	89	98	1	46.3

BROTECH

ENMX 0905

			Character.
APMXR	RP Программир, радиус	UTCN	Зарез
	R2.5	0.56	0
	R3.0	0.40	0.10
4.7	R3.5	0.24	0.25
	R4.0	0.10	0.41
	R4.5	0	0.49

,	ф ф ф Общего Плун- значения жерение						Винтовая герполяция	Расфрезеровывание отверстия		
DCX Диаметр фрезерования	АРМХ Максимальн. Глубина резания	АРМХК Макс. радиальная Глубина резания	RMPX Макс, угол врезания	RP Программир. радиус	UTCN	Diameter Минимальный диаметр	Diameter Максимальный диаметр	Рітсh Шаг интерполяц.	Ае Ширина увеличения	
25	1.5	4.7	3.8°	2.5	0.56	42	48	1.5	20	
26	1.5	4.7	3.5°	2.5	0.56	44	50	1.5	21	
32	1.5	4.7	2.4°	2.5	0.56	56	62	1.5	27	
33	1.5	4.7	2.2°	2.5	0.56	58	64	1.5	28	
40	1.5	4.7	1.6°	2.5	0.56	72	78	1.5	35	
50	1.5	4.7	1.1°	2.5	0.56	92	98	1.5	45	
63	1.5	4.7	0.8°	2.5	0.56	118	124	1.5	57	
80	1.5	4.7	0.6°	2.5	0.56	152	158	1.5	74	

Едизм.:мм

Фрезерная обработка - Фрезерование с высокими подачами - Корпуса Корпус для SDMT, SDMW

Угол в плане: 10° 4 Вершины, Позитивные

<S> Торцово-цилиндрическая фреза

	. HOMPITCE TOO SOME THINDHOLD PEN
CBDF	: Посадочное отверстие

Серия	APMX	Обозначение	Артикул 15000	DC	DCX	ZEFP	LF	TYPE	DCON /TDZ	CBDP	DCSFMS	ò
		YGFHF - SD1204 - D50Z4S22-C	198	32.4	50	4	40		22	22	42	•
		YGFHF-SD1204-D63Z5S22-C 199 45.4 63 5 40 Торцово- YGFHF-SD1204-D80Z6S27-C 200 62.4 80 6 50 цилинд.	22	22	48	•						
SDMT		YGFHF - SD1204 - D80Z6S27-C	200	62.4	80	6	50	цилинд.	27	25	58	•
1204	1.8	YGFHF - SD1204 - D100Z8S32-C	201	82.4	100	8	50		32	26	65	•
		YGMHF - SD1204 - D32Z2M16-C	196	14.4	32	2	43		M16	-81	29	•
		YGMHF-SD1204-D40Z3M16-C	197	22.4	40	3	43	Модуль.	M16		29	

Для корпусов под пластины SD..1204..до 50 мм:

Для корпусов под пластины SD..1204...от 50 мм:

Винты: 4015-М4Х9 (27100165)

Винты: 4015-М4Х11 (27100166)

Ключ : Torx 80-T15 (27100210)

Ключ : Torx 80-T15 (27100210)

Техническая информация

Фрезерная обработка - Фрезерование с высокими подачами - Пластины

ENMX - 4 вершины, негативные

	Серия	IC	5
	ENMX 0604	6.3	4.21
	ENMX 0905	9.0	5.4

	7777		
ENMX 0604	6.3	4.21	
ENMX 0905	9.0	5.4	

Артикул 1200...

: Номенклатурная позиция) : Позиция по доп. заказу

						K30 520	K30	P20	P30	M35 S30	H15	K15
ENM	X	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
FNIMV		ENMX 0604		0.3~2.0		0474	0553			0606		
ENMX Общего назначения	9	ENMX 0905		0.3~2.5		0702	0704			0703		
-TR		ENMX 0604-TR		0.3~2.5		0459	0552	0504	0636			
Закаленная сталь	0	ENMX 0905 -TR		0.3~3.0		0600	0629					
- ST	0	ENMX 0604-ST		0.2~0.9		0623				0625		
Нержавеющая сталь		ENMX 0905 -ST		0.2~1.2		0705				0706		

	C	корость резания							Vc (M	/мин.)					
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG Min	712 Max	YG Min	713 Max	YG Min	613 Max	YG	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	-	-	-	1=1
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	20	0		-
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100		-	-	-
	12~13	Феррит. и мартенсит. сталь	120	200	(G) =	-	~	~	240	- 9	80	180	-	-	-	-
M	14	Аустенит. нержав, сталь	130	250	4.00				- 4		100	200				-
	15~16	Серый чугун	120	250	120	270	-		-	1,2	-	3	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240			-0.		14	40	120	270	150	300
N	21-30	Алюминий	-	+	150	.	-		540		-		-	-		0.5
S	31~37	Суперсплавы и Титан	25	45	g=1_	_5 <u>4</u> -	120		(+)	- 61	20	40			-	12
G	38~41	Высокотверд. материалы	40	80	40	100		-	50	100		4	50	90	- 4	-

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБСТКА АНТИВИБ, ОПРАВКИ

Фрезерная обработка - Фрезерование с высокими подачами - Пластины

SDMT / W - 4 вершины, позитивные

Обозначение

SDMT 120420-ST

Серия	IC	S
SDM* 1204	12.7	4.7

Артикул 1200... Номенклатурная позиция

P25 M30	P30			P40	K15	
K30	K30	P20	P30	M35	KIS	K15
520	~	~	~	530	H15	×
/G602	G622	G712	G713	G613	G501	G5020
2	13	N	w	ω	7	20
0274						

-ST Нержавеющ. сталь, суперсплавы

SDMW Твердые материалы

SDMT

SDMW

SDMW 120420	1.9	0.60~1.40	1.4	0273	03/11	0634	
-------------	-----	-----------	-----	------	-------	------	--

Fz

(MM/3y6)

0.60~1.20

BS

(MM)

1.45

RE

(MM)

1.9

	C	корость резания							VC(M	мин.						
ISO	VDI	Подгруппа	YG Min	602 Max	YG Min	622 Max	YG	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	T 7	1.4	-	.=.
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	(4)	- 20	
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	_, 0 =	÷	-	-
М	12~13	Феррит. и мартенсит. сталь	120	200		-	×	~	-	-	80	180	100	+	-	8
IAI	14	Аустенит. нержав. сталь	130	250			12		2.9		100	200	-	Ú÷.	-	- 19
ĸ	15~16	Серый чугун	120	250	120	270	18		1 4	-	-	- (-)	180	350	200	350
Α.	17~18	Высокопрочный чугун	130	220	130	240	12		1 (4)	-	-	-	120	270	150	300
N	21~30	Алюминий			1.	-	100			-		-		+	-	
S	31~37	Суперсплавы и Титан	25	45	-	_0+i	4		125	-	20	40			-	- 12
H	38~41	Высокотверд. материалы	40	80	40	100	14	8	50	100	-	-	50	90	100	- 8

Фрезерная обработка - Фрезы для обработки фасок - Корпуса

Корпус для АРКТ

2 Вершины, Позитивные

<S> Торцово-цилиндрическая фреза

ZEFP : Количество эффективных режущих кромок CICT: Количество пластин CBDP : Посадочное отверстие

o: c.170 Едизм.:мм

Серия	APMX	Обозначение	Артикул 15000	CICT	DC	DCX	ZEFP	UF	TVIT	DCON /TDZ	CBDP	DCSFMS	•
	8.0	YGCH15-AP16-D35x93-S27- Z0306-C	294	6	35	93	3	50		27	25	58	•
	15	YGCH30-AP16-D35x87-S27- Z0306-C	295	6	35	87	3	50		27	25	58	•
APKT 1604	21.5	YGCH45-AP16-D35x77-S27- Z0306-C	296	6	35	77	3	50	Торцово-	27	25	58	•
	26.5	YGCH60-AP16-D35x65-S22- Z0306-C	297	6	35	65	3	50		22	22	48	•
	29.5	YGCH75-AP16-D35x50-S22- Z0306-C	298	6	35	50	3	50		22	22	42	•

ринты: 4015-М4Х11 (27100166)

Ключ: Тогх 80-Т15 (27100210)

ТОКАРНАЯ ОБРАБОТКА.

ТОКАРНАЯ ОБРАБОТКА ДЕРЖАВКИ

ТОКАРНАЯ ОБРАБОТКА АНТИВИБ, ОПРАВКИ

Фрезерная обработка - Фрезы для обработки фасок - Пластины

АРКТ-2 вершины, позитивные

Серия	LE	IC	S
APKT* 1604	15.2	9.4	5.3

Артинул 1200...

●: Номенклатурная позиция

○: Позиция по доп. заказу

P30 M35

P25 M30 K30

						520	K30			S30	H15	
AP	KT	Обозначение	RE (MM)	Fz (мм/зуб)	BS (MM)	YG602	YG622	YG712	YG713	YG613	YG501	YG5020
АРКТ Общего назначения	6	APKT 160408 PDTR	0.8	0.15 ~ 0.30	1.32	0001						
-ST Нержавеющая сталь, суперсплавы	0	APKT 160408-ST	0.8	0.08~0.25	1.32	0270						
-TR Закаленная сталь	ō	APKT 160408-TR	0.8	0.26 ~ 0.40	1.32	0256	0337					

	C	корость резания	Vc(м/мин.)													
ISO	VDI	Подгруппа	YG	602 Max	YG Min	622 Max	YG	712 Max	YG Min	713 Max	YG Min	613 Max	YG Min	501 Max	YG:	5020 Max
	1~5	Нелегированная сталь	140	380	140	400	170	300	150	280	90	230	17,47	- -	-	-
P	6~9	Низколегированная сталь	120	300	120	320	180	250	130	235	70	210	-	4.4	-2	
	10~11	Высоколегирован. сталь	70	150	70	170	100	140	90	130	60	100	9	÷	-	(4)
М	12~13	Феррит. и мартенсит. сталь	120	200		-	~	~		-	80	180	1.19	+ 1	-	8
IAI	14	Аустенит. нержав. сталь	130	250	100		12		294		100	200	-	U.	-	
v	15~16	Серый чугун	120	250	120	270	1.4	-	- 6	-	-	-	180	350	200	350
K	17~18	Высокопрочный чугун	130	220	130	240	12	- 2	16	-	100	-	120	270	150	300
N	21~30	Алюминий			1.	-	100		-			-	-	+	-	
S	31~37	Суперсплавы и Титан	25	45	, A-	Je i	16		15-0	-	20	40			-	-
i i	38~41	Высокотверд. материалы	40	80	40	100	12	- 8	50	100		-	50	90	-	

7GMill

Фрезерная обработка - Модульный хвостовик

Хвостовики для модульных фрез

Едизм:мм

Серия	Обозначение	Артикул 15000	DCSFWS	LF	LH	TMT	DCON	٥
M08	YGM - D13 - C16 - M08 - L100 - C	092	13	100	40	Utenaun	16	•
IMO	YGM-D15-C16-M08-L130-C	093	15	130	70	Цилинд.	16	•
M10	YGM-D18-C20-M10-L130-C	094	18	130	70	Цилинд.	20	•
	YGM - D23 - C25 - M12 - L150 - C	096	25	150	70		25	•
M12	YGM - D23 - C25 - M12 - L200 - C	097	23	200	100	Цилинд.	25	•
	YGM - D23 - C25 - M12 - L250 - C	098	23	250	150		25	
	YGM - D30 - C32 - M16 - L150 - C	099	30	150	70		32	•
M16	YGM - D30 - C32 - M16 - L200 - C	100	30	200	100	Unionia	32	
	YGM - D30 - C32 - M16 - L250 - C	101	30	250	150	Цилинд.	32	•
	YGM-D30-C32-M16-L300-C	102	30	300	200		32	

СВЕРЛЕНИЕ

Обзор инструмента Сменные пластины для сверления Обзор сверл со сменными пластинами

Обзор пластин для сверления

Марки сплавов для сверления

Универсальные пластины для сверления

O	4 вершины	SPMX Серия	SPMX	05, 06, 07, 09, 11, 14	
0	ISO 3 Вершины	WCMX Серия	WCMX	03, 04, 05, 06, 08	

Стружколомы для сверления

Сверла со сменными пластинами глубиной сверления 2D

					-						G 400	Едизм: м
Серия	Обозначение	Артикул	Tun	DC	DOON	DESFMS	OAL	ш	LF	LS	© : с.190 Винт	Ключ
1	YGSP2-12.5d20F024-05	35000001	2D	12.5	20	25	96	24	46	50		
	YGSP2-13d20F026-05	35000002	2D	13	20	25	98	26	48	50		
SPMX	YGSP2-13,5d20F026-05	35000003	2D	13.5	20	25	98	26	48	50	M2X4	80-T06
050204	YGSP2-14d20F028-05	35000004	2D	14	20	25	100	28	50	50	(27100111)	(27100206
	YGSP2-14,5d20F028-05	35000005	2D	14.5	20	25	100	28	50	50		
	YGSP2-15d20F030-05	35000006	2D	15	20	25	102	30	52	50		
	YGSP2-15,5d20F030-05	35000007	2D	15.5	20	25	102	30	52	50		80-T07 (27100207)
	YGSP2-16d25F032-06	35000008	2D	16	25	34	110	32	54	56		
	YGSP2-16,5d25F032-06	35000009	2D	16.5	25	34	110	32	54	56		
	YGSP2-17d25F034-06	35000010	2D	17	25	34	112	34	56	56		
	YGSP2-17,5d25F034-06	35000011	2D	17.5	25	34	112	34	56	56		
	YGSP2-18d25F036-06	35000012	2D	18	25	34	114	36	58	56	140.00/5	
SPMX 060204	YGSP2-18,5d25F036-06	35000013	2D	18,5	25	34	114	36	58	56	(27100113)	
000204	YGSP2-19d25F038-06	35000014	2D	19	25	34	116	38	60	56		
	YGSP2-19,5d25F038-06	35000015	2D	19.5	25	34	116	38	60	56		
	YGSP2-20d25F040-06	35000016	2D	20	25	34	118	40	62	56		
	YGSP2-20,5d25F040-06	35000017	2D	20.5	25	34	118	40	62	56		
	YGSP2-21d25F042-06	35000018	2D	21	25	34	120	42	64	56		
	YGSP2-21,5d25F042-06	35000019	2D	21.5	25	34	120	42	64	56		
	YGSP2-22d25F044-07	35000020	2D	22	25	34	122	44	66	56		
	YGSP2-22,5d25F044-07	35000021	2D	22.5	25	34	122	44	66	56		
	YGSP2-23d25F046-07	35000022	2D	23	25	34	124	46	68	56		
	YGSP2-23,5d25F046-07	35000023	2D	23.5	25	34	124	46	68	56		
	YGSP2-24d25F048-07	35000024	2D	24	25	34	126	48	70	56		
SPMX	YGSP2-24,5d25F048-07	35000025	2D	24.5	25	34	126	48	70	56	M2.5X6	80-T08
07T308	YGSP2-25d25F050-07	35000026	2D	25	25	34	128	50	72	56	(27100119)	80-108
	YGSP2-25,5d25F050-07	35000027	2D	25.5	25	34	128	50	72	56		
	YGSP2-26d25F052-07	35000028	2D	26	25	34	130	52	74	56		

26.5

27

27.5

25

25

25

34

YGSP2-26,5d25F052-07 35000029

YGSP2-27,5d25F054-07 35000031

35000030

YGSP2-27d25F054-07

130

132

132

52

Сверла со сменными пластинами глубиной сверления 2D

100

202

132

70

_		
[0]	190	FIT WISH ! MAN

											(e) : c.19	O ETINBMC N
Серия	Обозначение	Артикул	Ten	DC	DCON	DCSFMS	ÐAL	LU	LF	LS	Винт	Ключ
	YGSP2-28d25F056-09	35000032	2D	28	25	34	134	56	78	56		
	YGSP2-28,5d25F056-09	35000033	2D	28.5	25	34	134	56	78	56		
	YGSP2-29d25F058-09	35000034	2D	29	25	34	136	58	80	56		80-T15 (27100210)
SPMX	YGSP2-29,5d25F058-09	35000035	2D	29.5	25	34	136	58	80	56	M3.5X9	
090408	YGSP2-30d32F060-09	35000036	2D	30	32	44	147	60	87	60	(27100150)	
	YGSP2-31d32F062-09	35000037	2D	31	32	44	149	62	89	60		
	YGSP2-32d32F064-09	35000038	2D	32	32	44	151	64	91	60		
	YGSP2-33d32F066-09	35000039	2D	33	32	44	153	66	93	60		
	YGSP2-34d32F068-11	35000040	2D	34	32	44	155	68	95	60		80-T15 (27100210)
	YGSP2-35d32F070-11	35000041	2D	35	32	44	157	70	97	60		
	YGSP2-36d32F072-11	35000042	2D	36	32	44	159	72	99	60		
SPMX	YGSP2-37d32F074-11	35000043	2D	37	32	44	161	74	101	60	M4X11 (27100166)	
110408	YGSP2-38d32F076-11	35000044	2D	38	32	44	163	76	103	60		
	YGSP2-39d32F078-11	35000045	2D	39	32	44	165	78	105	60		
	YGSP2-40d32F080-11	35000046	2D	40	32	44	167	80	107	60		
	YGSP2-41d32F082-11	35000047	2D	41	32	44	169	82	109	60		
	YGSP2-42d32F084-14	35000048	2D	42	32	44	171	84	111	60		
	YGSP2-43d32F086-14	35000049	2D	43	32	44	173	86	113	60		
	YGSP2-44d32F088-14	35000050	2D	44	32	44	175	88	115	60		
	YGSP2-45d32F090-14	35000051	2D	45	40	54	192	90	122	70	The second of	5555×3
SPMX	YGSP2-46d40F092-14	35000052	2D	46	40	54	194	92	124	70	M5X11	80-T15
140512	YGSP2-47d40F094-14	35000053	2D	47	40	54	196	94	126	70	(27100178)	(2710021
	YGSP2-48d40F096-14	35000054	2D	48	40	54	198	96	128	70		
	YGSP2-49d40F098-14	35000055	2D	49	40	54	200	98	130	70		
					+	1						

YGSP2-50d40F100-14

35000056

50

Сверла со сменными пластинами глубиной сверления 3D

O : c.190 Едизм: мм

TUKAPHAJI OSPASOTIKA

ПОКЛЕНАЯ ОБРАБОТКА

Серия	Обозначение	Артикул	Tun	DC	DCON	DCSFMS	DAL	w	LF	LS	Винт	Ключ
	YGSP3-28d25F084-09	35000088	3D	28	25	34	162	84	106	56		
	YGSP3-28,5d25F084-09	35000089	3D	28.5	25	34	162	84	106	56		
	YGSP3-29d25F087-09	35000090	3D	29	25	34	165	87	109	56		
	YGSP3-29,5d25F087-09	35000091	3D	29.5	25	34	165	87	109	56		
	YGSP3-30d32F090-09	35000092	3D	30	32	44	177	90	117	60		
SPMX	YGSP3-30,5d32F090-09	35000093	3D	30.5	32	44	177	90	117	60	M3.5X9	80-T15 (271002210
090408	YGSP3-31d32F093-09	35000094	3D	31	32	44	180	93	120	60	(271001150)	
	YGSP3-31,5d32F093-09	35000095	3D	31.5	32	44	180	93	120	60		
	YGSP3-32d32F096-09	35000096	3D	32	32	44	183	96	123	60		
	YGSP3-32,5d32F096-09	35000097	3D	32.5	32	44	183	96	123	60		
	YGSP3-33d32F099-09	35000098	3D	33	32	44	186	99	126	60		
	YGSP3-33,5d32F099-09	35000099	3D	33.5	32	44	186	99	126	60		
	YGSP3-15,5d20F045-06	35000063	3D	15.5	20	25	117	45	67	50		80-T7 (27100207)
	YGSP3-16d25F048-06	35000064	3D	16	25	34	126	48	70	56		
	YGSP3-16,5d25F048-06	35000065	3D	16.5	25	34	126	48	70	56		
	YGSP3-17d25F051-06	35000066	3D	17	25	34	129	51	73	56		
	YGSP3-17,5d25F051-06	35000067	3D	17.5	25	34	129	51	73	56		
	YGSP3-18d25F054-06	35000068	3D	18	25	34	132	54	76	56		
SPMX 060204	YGSP3-18,5d25F054-06	35000069	3D	18.5	25	34	132	54	76	56	M2.2X5	
000204	YGSP3-19d25F057-06	35000070	3D	19	25	34	135	57	79	56	(27100113)	
	YGSP3-19,5d25F057-06	35000071	3D	19.5	25	34	135	57	79	56		
	YGSP3-20d25F060-06	35000072	3D	20	25	34	138	60	82	56		
	YGSP3-20,5d25F060-06	35000073	3D	20.5	25	34	138	60	82	56		
	YGSP3-21d25F063-06	35000074	3D	21	25	34	141	63	85	56		
	YGSP3-21,5d25F063-06	35000075	3D	21.5	25	34	141	63	85	56		
	YGSP3-22d25F066-07	35000076	3D	22	25	34	144	66	88	56		
	YGSP3-22,5d25F066-07	35000077	3D	22.5	25	34	144	66	88	56		
	YGSP3-23d25F069-07	35000078	3D	23	25	34	147	69	91	56		
SPMX	YGSP3-23,5d25F069-07	35000079	3D	23.5	25	34	147	69	91	56	M2.5X6	80-T8
07T308	YGSP3-24d25F072-07	35000080	3D	24	25	34	150	72	94	56	(27100119)	(27100208
	YGSP3-24,5d25F072-07	35000081	3D	24.5	25	34	150	72	94	56		
	YGSP3-25d25F075-07	35000082	3D	25	25	34	153	75	97	56		
	YGSP3-25,5d25F075-07	35000083	3D	25.5	25	34	153	75	97	56		

Сверла со сменными пластинами глубиной сверления 3D

O : c.190 Едизм: м

Серия	Обозначение	Артикул	TMIT	DC	DCON	DCSFMS	OAL	m	LF	LS	Винт	Ключ
	YGSP3-26d25F078-07	35000084	3D	26	25	34	156	78	100	56		
SPMX	YGSP3-26,5d25F078-07	35000085	3D	26.5	25	34	156	78	100	56	M5X11	80-T7
07T308	YGSP3-27d25F081-07	35000086	3D	27	25	34	159	81	103	56	(27100119)	(27100207)
	YGSP3-27,5d25F081-07	35000087	3D	27.5	25	34	159	81	103	56		
	YGSP3-12,5d20F036-05	35000057	3D	12.5	20	25	108	36	58	50		
	YGSP3-13d20F 039-05	35000058	3D	13	20	25	111	39	61	50		
SPMX	YGSP3-13,5d20F 039-05	35000059	3D	13.5	20	25	111	39	61	50	M2X4	80-T6 (27100206)
050204	YGSP3-14d20F 042-05	35000060	3D	14	20	25	114	42	64	50	(27100111)	
	YGSP3-14,5d20F 042-05	35000061	3D	14.5	20	25	114	42	64	50		
	YGSP3-15d20F 045-05	35000062	3D	15	20	25	117	45	67	50		
	YGSP3-34d32F102-11	35000100	3D	34	32	44	189	102	129	60		
	YGSP3-34,5d32F 102-11	35000101	3D	34.5	32	44	189	102	129	60		80-T15 (27100210)
	YGSP3-35d32F105-11	35000102	3D	35	32	44	192	105	132	60		
	YGSP3-35,5d32F 105-11	35000103	3D	35.5	32	44	192	105	132	60	M4X11 (27100166)	
	YGSP3-36d32F108-11	35000104	3D	36	32	44	195	108	135	60		
	YGSP3-36,5d32F 108-11	35000105	3D	36.5	32	44	195	108	135	60		
	YGSP3-37d32F111-11	35000106	3D	37	32	44	198	111	138	60		
SPMX	YGSP3-37,5d32F111-11	35000107	3D	37.5	32	44	198	111	138	60		
110408	YGSP3-38d32F114-11	35000108	3D	38	32	44	201	114	141	60		
	YGSP3-38,5d32F114-11	35000109	3D	38.5	32	44	201	114	141	60		
	YGSP3-39d32F117-11	35000110	3D	39	32	44	204	117	144	60		
	YGSP3-39,5d32F117-11	35000111	3D	39.5	32	44	204	117	144	60		
	YGSP3-40d32F120-11	35000112	3D	40	32	44	207	120	147	60		
	YGSP3-40,5d32F120-11	35000113	3D	40.5	32	44	207	120	147	60		
	YGSP3-41d32F123-11	35000114	3D	41	32	44	210	123	150	60		
	YGSP3-41,5d32F 123-11	35000115	3D	41.5	32	44	210	123	150	60		
	YGSP3-42d32F126-14	35000116	3D	42	32	44	213	126	153	60		
	YGSP3-42,5d32F126-14	35000117	3D	42.5	32	44	213	126	153	60		
	YGSP3-43d32F129-14	35000118	3D	43	32	44	216	129	156	60		
SPMX	YGSP3-43,5d32F129-14	35000119	3D	43.5	32	44	216	129	156	60	M5X11	80-T15
140512	YGSP3-44d32F132-14	35000120	3D	44	32	44	219	132	159	60	(27100178)	(27100210
	YGSP3-44,5d32F132-14	35000121	3D	44.5	32	44	219	132	159	60		
	YGSP3-45d40F135-14	35000122	3D	45	40	54	237	135	167	70		

Сверла со сменными пластинами глубиной сверления 3D

0	c 190	Ел изм. мм

7/GDR!LL

Серия	Обозначение	Артикул	Тип	DC	DCON	DCSFMS	OAL	ш	LF	LS	Винт	Ключ
	YGSP3-45,5d40F135-14	35000123	3D	45.5	40	54	237	135	167	70		80-T15 (27100210)
	YGSP3-46d40F138-14	35000124	3D	46	40	54	240	138	170	70	M5X11 (27100178)	
	YGSP3-47d40F141-14	35000125	3D	47	40	54	243	141	173	70		
SPMX	YGSP3-48d40F144-14	35000126	3D	48	40	54	246	144	176	70		
140512	YGSP3-49d40F147-14	35000127	3D	49	40	54	249	147	179	70		
	YGSP3-50d40F150-14	35000128	3D	50	40	54	252	150	182	70		
-	YGSP3-51d40F153-14	35000129	3D	51	40	54	255	153	185	70		
	YGSP3-52d40F154-14	35000130	3D	52	40	54	258	156	188	70		

YGSP4-21d25F084-06

Сверление - Сверла

Сверла со сменными пластинами глубиной сверления 4D

35000141

4D

21

	*	OAL			-						O : c.190	Э Едгизис: мм
Серия	Обозначение	Артикул	Ten	DC	DCON	DCSFMS	OAL	m	LF	1.5	Винт	Ключ
ana au	YGSP4-13d20F 052-05	35000131	4D	13	20	25	124	52	74	50	M2 EVO	00 T15
SPMX 050204	YGSP4-14d20F056-05	35000132	4D	14	20	25	128	56	78	50	M3.5X9	80-T15
	YGSP4-15d20F060-05	35000133	4D	15	20	25	132	60	82	50	(27100150)	(27100210)
	YGSP4-16d25F064-06	35000134	4D	16	25	34	142	64	86	56		
	YGSP4-17d25F068-06	35000135	4D	17	25	34	146	68	90	56		
	YGSP4-17,5d25F068-06	35000136	4D	17	25	34	146	68	90	56		
SPMX	YGSP4-18d25F072-06	35000137	4D	18	25	34	150	72	94	56	M4X11	80-T15
060204	YGSP4-19d25F076-06	35000138	4D	19	25	34	154	76	98	56	(27100166)	(27100210)
	YGSP4-19,5d25F076-06	35000139	4D	19.5	25	34	154	76	98	56		
	YGSP4-20d25F080-06	35000140	4D	20	25	34	158	80	102	56		

SPMX 07T308	YGSP4-22d25F088-07	35000142	4D	22	25	34	166	88	110	56	M5X11 (27100178)	80-T15 (27100210)
	YGSP4-23d25F092-07	35000143	4D	23	25	34	170	92	114	56		
	YGSP4-23,5d25F092-07	35000144	4D	23.5	25	34	170	92	114	56		
	YGSP4-24d25F096-07	35000145	4D	24	25	34	174	96	118	56		
	YGSP4-25d25F100-07	35000146	4D	25	25	34	178	100	122	56		
	YGSP4-26d25F104-07	35000147	4D	26	25	34	182	104	126	56		
	YGSP4-27d25F108-07	35000148	4D	27	25	34	186	108	130	56		
	YGSP4-27,5d25F108-07	35000149	4D	27.5	25	34	186	108	130	56		

25

34

162

84

106

56

Сверла со сменными пластинами глубиной сверления 4D

© : c.190) Едизм: мм
Винт	Ключ

7/GDR!LL

Серия	Обозначение	Артикул	Tun	oc	DCON	DCSFMS	OAL	LU	LF	LS	Винт	Ключ
	YGSP4-28d25F112-09	35000150	4D	28	25	34	190	112	134	56		
SPMX 090408	YGSP4-29d25F116-09	35000151	4D	29	25	34	194	116	138	56		
	YGSP4-30d32F120-09	35000152	4D	30	32	44	207	120	147	60	Macvo	80-T15
	YGSP4-31d32F124-09	35000153	4D	31	32	44	211	124	151	60	M3.5X9 (27100150)	(27100210
	YGSP4-32d32F128-09	35000154	4D	32	32	44	215	128	155	60	(27100130)	
	YGSP4-33d32F132-09	35000155	4D	33	32	44	219	132	159	60		
	YGSP4-33,5d32F132-09	35000156	4D	33.5	32	44	219	132	159	60		
	YGSP4-34d32F136-11	35000157	4D	34	32	44	223	136	163	60		80-T15
	YGSP4-35d32F140-11	35000158	4D	35	32	44	227	140	167	60		
	YGSP4-36d32F144-11	35000159	4D	36	32	44	231	144	171	60		
SPMX	YGSP4-37d32F148-11	35000160	4D	37	32	44	235	148	175	60	M4X11	
110408	YGSP4-38d32F152-11	35000161	4D	38	32	44	239	152	179	60	(27100166)	(27100210
	YGSP4-39d32F156-11	35000162	4D	39	32	44	243	156	183	60		
	YGSP4-40d32F160-11	35000163	4D	40	32	44	247	160	187	60		
	YGSP4-41d32F164-11	35000164	4D	41	32	44	251	164	191	60		
22407	YGSP4-42d32F168-14	35000165	4D	42	32	44	255	168	195	60		
SPMX 140512	YGSP4-43d32F172-14	35000166	4D	43	32	44	259	172	199	60	M5X11	80-T15) (27100210)
140312	YGSP4-44d32F176-14	35000167	4D	44	32	44	263	176	203	60	(27100178)	

181

Сверление - Сверла

Сверла со сменными пластинами глубиной сверления 5D

											© : c.190) ЕД ИЗМС ММ
Серия	Обозначение	Артикул	Тип	DC	DCON	DCSFMS	OAL	LU	LF	1.5	Винт	Ключ
SPMX	YGSP5-14d20F070-05	37000008	5D	14	20	25	142	70	92	50	M2X4	80-T6
050204	YGSP5-15d20F075-05	37000009	5D	15	20	25	143	75	97	50	(27100111)	(27100206)
	YGSP5-16d25F080-06	37000022	5D	16	25	34	158	80	102	56		
	YGSP5-17d25F085-06	37000023	5D	17	25	34	163	85	107	56		
	VCCDE 1043EE000 06	27000024	ED	10	25	24	160	00	112	E6	MARYE	00.77

	YGSP5-16d25F080-06	37000022	50	16	25	34	158	80	102	56		
	YGSP5-17d25F085-06	37000023	5D	17	25	34	163	85	107	56		
SPMX	YGSP5-18d25F090-06	37000024	5D	18	25	34	168	90	112	56	M2.2X5	80-T7
060204	YGSP5-19d25F095-06	37000025	5D	19	25	34	173	95	117	56	(27100113)	(27100207)
	YGSP5-20d25F100-06	37000026	5D	20	25	34	178	100	122	56		
	YGSP5-21d25F105-06	37000027	5D	21	25	34	183	105	127	56		
			11		5							
	YGSP5-22d32F110-07	37000040	5D	22	32 🖷	44	197	110	137	60		
	YGSP5-23d32F115-07	37000041	5D	23	32	44	202	115	142	60		
SPMX	YGSP5-24d32F120-07	37000042	5D	24	32	44	207	120	147	60	M2.5X6	80-T8
07T308	YGSP5-25d32F125-07	37000043	5D	25	32	44	212	125	152	60	(27100119)	(27100208)
	YGSP5-26d32F130-07	37000044	5D	26	32	44	217	130	157	60		
	YGSP5-27d32F135-07	37000045	5D	27	32	44	222	135	162	60		

	YGSP5-28d32F140-09	37000058	5D	28	32	44	227	140	167	60		
	YGSP5-29d32F145-09	37000059	5D	29	32	44	232	145	172	60		
SPMX	YGSP5-30d32F150-09	37000060	5D	30	32	44	237	150	177	60	M3.5X9	80-T15
090408	YGSP5-31d32F155-09	37000061	5D	31	32	44	242	155	182	60	(27100150)	(27100210)
	YGSP5-32d32F160-09	37000062	5D	32	32	44	247	160	187	60		
	YGSP5-33d32F165-09	37000063	5D	33	32	44	252	165	192	60		

WCMX 030208 (DC 16~19.5)

Винт	Ключ
3008-M2.5x6	80-T08
(27100119)	(27100208)

7GDR!LL

(A) : c.191 E

							(0)	c.191	ET N3W; W	١
Серия	DC	LU	Обозначение	Артикул 3600	LF	OAL	DCON	DCSFMS	LS	
		32	YGWC2 - 16d25F032 - 03	0001	54	142				
	16	48	YGWC3 - 16d25F048 - 03	0060	70	126				
		64	YGWC4-16d25F064-03	0135	86	146				
	14.5	32	YGWC2 - 16.5d25F032 - 03	0002	54	110				
	16.5	48	YGWC3 - 16.5d25F048 - 03	0061	70	126				
		34	YGWC2 - 17d25F034 - 03	0003	56	112				
	17	51	YGWC3 - 17d25F051 - 03	0062	73	129				
		64	YGWC4 - 17d25F064 - 03	0136	86	146				
	175	34	YGWC2 - 17.5d25F034 - 03	0004	56	112				
	17.5	51	YGWC3 - 17.5d25F051 - 03	0063	73	129				
WCMX 030208		36	YGWC2 - 18d25F036 - 03	0005	58	114	25	34	56	
030200	18	54	YGWC3 - 18d25F054 - 03	0064	76	132				
		72	YGWC4 - 18d25F072 - 03	0137	94	150				
		36	YGWC2 - 18.5d25F036 - 03	0006	58	114				
	18.5	54	YGWC3 - 18.5d25F054 - 03	0065	76	132				
		68	YGWC4 - 18.5d25F068 - 03	0138	94	150				
		38	YGWC2 - 19d25F038 - 03	0007	60	116				
	19	57	YGWC3 - 19d25F057 - 03	0066	79	135				
		76	YGWC4 - 19d25F076 - 03	0139	98	154				
	19.5	38	YGWC2 - 19.5d25F038 - 03	0008	60	116				
	19.5	57	YGWC3 - 19.5d25F057 - 03	0067	79	135				
								A. C.		

WCMX 040208 (DC 20~23.5)

Винт	Ключ
3008-M2.5x6	80-T08
(27100119)	(27100208)

					-			6	: c.191	Ед ивм: мм
	Серия	DC	LU	Обозначение	Артикул 3600	LF	OAL	DCON	DCSFMS	LS
Ī			40	YGWC2 - 20d25F040 - 04	0009	62	118			
		20	60	YGWC3 - 20d25F060 - 04	0068	82	138			
			80	YGWC4 - 20d25F080 - 04	0140	102	158			
		1 22 20	40	YGWC2 - 20.5d25F040 - 04	0010	62	118			
		20.5	60	YGWC3 - 20.5d25F060 - 04	0069	82	138			
		-	42	YGWC2 - 21 d25F042 - 04	0011	64	120			
		21	63	YGWC3 - 21 d25F063 - 04	0070	85	141			
			84	YGWC4 - 21 d25F084 - 04	0141	106	162			
		72.5	42	YGWC2 - 21.5d25F042 - 04	0012	64	120			
		21.5	63	YGWC3 - 21.5d25F063 - 04	0071	85	141			
	WCMX	22	44	YGWC2 - 22d25F044 - 04	0013	66	122	25	34	56
	040208		66	YGWC3 - 22d25F066 - 04	0072	88	144			
			88	YGWC4 - 22d25F088 - 04	0142	110	166			
			44	YGWC2 - 22.5d25F044 - 04	0014	66	122			
		22.5	66	YGWC3 - 22.5d25F066 - 04	0073	88	144			
			88	YGWC4 - 22.5d25F088 - 04	0143	110	166			
			46	YGWC2 - 23d25F046 - 04	0015	68	124	Ì		
		23	69	YGWC3 - 23d25F069 - 04	0074	91	147			
			92	YGWC4 - 23d25F092 - 04	0144	114	170			
		975	46	YGWC2 - 23.5d25F046 - 04	0016	68	124			
		23.5	69	YGWC3 - 23.5d25F069 - 04	0075	91	147			
								4		

WCMX 050308 (DC 24~29.5)

Винт	Ключ
3008-M3x8	80-T08
(27100130)	(27100208)

6	: c.191	Ед изм: м
6	. C. 191	CHACIAL W

							6	c.191	Едизми
Серия	DC	LU	Обозначение	Артикул 3600	LF	OAL	DCON	DCSFMS	LS
		48	YGWC2 - 24S25F048 - 05	0017	70	126			
	24	72	YGWC3 - 24d25F072 - 05	0076	94	150			
		96	YGWC4 - 24d25F096 - 05	0145	118	174			
	245	48	YGWC2 - 24.5d25F048 - 05	0018	70	126			
	24.5	72	YGWC3 - 24,5d25F072 - 05	0077	94	150			
		50	YGWC2 - 25d25F050 - 05	0019	72	128			
	25	75	YGWC3 - 25d25F075 - 05	0078	97	153			
		100	YGWC4 - 25d25F100 - 05	0146	122	178			
	25.5	50	YGWC2 - 25.5d25F050 - 05	0020	72	128			
	25.5	75	YGWC3 - 25,5d25F075 - 05	0079	97	153			
		52	YGWC2 - 26d25F052 - 05	0021	74	130			
	26	78	YGWC3 - 26d25F078 - 05	0080	100	156			
		104	YGWC4 - 26d25F104 - 05	0147	126	182			
		52	YGWC2 - 26.5d25F052 - 05	0022	74	130			
	26.5	78	YGWC3 - 26.5d25F078 - 05	0081	100	156			
WCMX		104	YGWC4 - 26.5d25F104 - 05	0148	126	182	25	24	
050308		54	YGWC2 - 27d25F054 - 05	0023	76	132	- 25	34	56
	27	81	YGWC3 - 27d25F081 - 05	0082	103	159			
		108	YGWC4 - 27d25F108 - 05	0149	130	186			
	27.5	54	YGWC2 - 27.5d25F054 - 05	0024	76	132			
	27.5	81	YGWC3 - 27.5d25F081 - 05	0083	103	159			
		56	YGWC2 - 28d25F056 - 05	0025	78	134			
	28	84	YGWC3 - 28d25F084 - 05	0084	106	162			
		112	YGWC4 - 28d25F112 - 05	0150	134	190			
		56	YGWC2 - 28,5d25F056 - 05	0026	78	134			
	28.5	84	YGWC3 - 28.5d25F084 - 05	0085	106	162			
		112	YGWC4 - 28.5d25F112 - 05	0151	134	190			
		58	YGWC2 - 29d25F058 - 05	0027	80	136			
	29	87	YGWC3 - 29d25F087 - 05	0086	109	165			
		116	YGWC4-29d25F116-05	0152	138	194			
	20.5	58	YGWC2 - 29.5d25F058 - 05	0028	80	136			
	29.5	87	YGWC3 - 29.5d25F087 - 05	0087	109	165			

7GDR!LL

Сверление - Сверла

WCMX 06T308 (DC 30~44.5)

7	1	T	L	
1	6	1	H	
K	F	1		
	DCS	SFN	ns.	

Винт	Ключ
3010-M3.5x9	80-T10
(27100147)	(27100209)

(O)	c.191	Ед изм.: мм
	DCSFMS	LS

Серия	DC	LU	Обозначение	Артикул 3600	LF	OAL	DCON	DCSFMS	LS
		60	YGWC2 - 30d32F060 - 06	0029	87	147			
30	30	90	YGWC3-30d32F090-06	8800	117	177			
		120	YGWC4-30d32F120-06	0153	147	207			
	30.5	90	YGWC3-30.5d32F090-06	0089	117	177			
		62	YGWC2-31 d32F062-06	0030	89	149			
	31	93	YGWC3 - 31 d32F093 - 06	0090	120	180			
		124	YGWC4-31d32F124-06	0154	151	211			
	31.5	93	YGWC3-31.5d32F093-06	0091	120	180			
		64	YGWC2-32d32F064-06	0031	91	151			60
	32	96	YGWC3-32d32F096-06	0092	123	183			
		128	YGWC4-32d32F128-06	0155	155	215			
	32.5	96	YGWC3 - 32.5d32F096 - 06	0093	123	183	27		
		66	YGWC2 - 33d32F066 - 06	0032	93	153			
	33	99	YGWC3 - 33d32F099 - 06	0094	126	186			
		132	YGWC4 - 33d32F132 - 06	0156	159	219			
WCMX	22.5	99	YGWC3 - 33.5d32F099 - 06	0095	126	186			
06T308	33.5	132	YGWC4-33.5d32F132-06	0157	159	219	32	44	
		68	YGWC2 - 34d32F068 - 06	0033	95	155			
	34	102	YGWC3 - 34d32F102 - 06	0096	129	189			
		136	YGWC4-34d32F136-06	0158	163	223			
	34.5	102	YGWC3 - 34.5d32F102 - 06	0097	129	189			
		70	YGWC2 - 35d32F070 - 06	0034	97	157			
	35	105	YGWC3 - 35d32F105 - 06	0098	132	192			
		140	YGWC4 - 35d32F140 - 06	0159	167	227			
	35.5	105	YGWC3-35.5d32F105-06	0099	132	192			
		72	YGWC2-36d32F072-06	0035	99	159			
	36	108	YGWC3 - 36d32F108 - 06	0100	135	195			
		144	YGWC4-36d32F144-06	0160	171	231			
	36.5	108	YGWC3-36.5d32F108-06	0101	135	195			
		74	YGWC2-37d32F074-06	0036	101	161			
	37	111	YGWC3-37d32F111-06	0102	138	198			
		148	YGWC4-37d32F148-06	0161	175	235			

WCMX 06T308 (DC 30~44.5)

Винт	Ключ
3010-M3.5x9	80-T10
(27100147)	(27100209)

MM

- 1							6	c.191	Ед изм: х
Серия	DC	LU	Обозначение	Артикул 3600	LF	OAL	DCON	DCSFMS	LS
3	37.5	111	YGWC3 - 37.5d32F111 - 06	0103	138	198			
		76	YGWC2 - 38d32F076 - 06	0037	103	163			
	38	114	YGWC3 - 38d32F114 - 06	0104	141	201			
		152	YGWC4 - 38d32F152 - 06	0162	179	239			
	38.5	114	YGWC3 - 38.5d32F114 - 06	0105	141	201	1		
	30.3	152	YGWC4 - 38.5d32F152 - 06	0163	179	239			
		78	YGWC2 - 39d32F078 - 06	0038	105	165			
	39	117	YGWC3 - 39d32F117 - 06	0106	144	204			
		156	YGWC4 - 39d32F156 - 06	0164	183	243			
	39.5	117	YGWC3 - 39.5d32F117 - 06	0107	144	204			
		80	YGWC2 - 40d32F080 - 06	0039	107	167			
	40	120	YGWC3 - 40d32F120 - 06	0108	147	207			
		160	YGWC4-40d32F160-06	0165	187	247			
	40.5	120	YGWC3 - 40.5d32F120 - 06	0109	147	207			
WCMX	41	82	YGWC2-41 d32F082-06	0040	109	169	32	44	60
06T308		123	YGWC3 - 41d32F123 - 06	0110	150	210	32	44	00
		164	YGWC4-41d32F164-06	0166	191	251			
	41.5	123	YGWC3-41.5d32F123-06	0111	150	210			
		84	YGWC2 - 42d32F084 - 06	0041	111	171			
	42	126	YGWC3 - 42d32F126 - 06	0112	153	213			
		168	YGWC4 - 42d32F168 - 06	0167	195	255			
	42.5	126	YGWC3 - 42.5d32F126 - 06	0113	153	213			
		86	YGWC2 - 43d32F086 - 06	0042	113	173			
	43	129	YGWC3 - 43d32F129 - 06	0114	156	216			
		172	YGWC4 - 43d32F172 - 06	0168	199	259			
	43.5	129	YGWC3 - 43.5d32F129 - 06	0115	156	216			
		88	YGWC2 - 44d32F088 - 06	0043	115	175			
	44	132	YGWC3 - 44d32F132 - 06	0116	159	219			
		176	YGWC4 - 44d32F176 - 06	0169	203	263			
	44.5	132	YGWC3 - 44.5d32F132 - 06	0117	159	219			

WCMX 080412 (DC 45~60)

Винт	Ключ
4015-M4x11	80-T15
(27100166)	(27100210)

				×			6	c.191	Ед изм.: мм
Серия	DC	LU	Обозначение	Артикул 3600	UF	OAL	DCON	DCSFMS	LS
		90	YGWC2 - 45d40F090 - 08	0044	122	192			
	45	135	YGWC3 - 45d40F135 - 08	0118	167	237			
		180	YGWC4 - 45d40F180 - 08	0170	212	282			
	45.5	135	YGWC3 - 45.5d40F135 - 08	0119	167	237			
	455	92	YGWC2 - 46d40F092 - 08	0045	124	194			
	46	138	YGWC3 - 46d40F138 - 08	0120	170	240			
		184	YGWC4 - 46d40F184 - 08	0171	216	286			
		94	YGWC2 - 47d40F094 - 08	0046	126	196			
	47	141	YGWC3 - 47d40F141 - 08	0121	173	243			
WCMX		188	YGWC4 - 47d40F188 - 08	0172	220	290		-1	70
080412		96	YGWC2 - 48d40F096 - 08	0047	128	198	40	54	70
	48	144	YGWC3 - 48d40F144 - 08	0122	176	246			
		192	YGWC4 - 48d40F192 - 08	0173	224	294			
		98	YGWC2 - 49d40F098 - 08	0048	130	200			
	49	147	YGWC3 - 49d40F147 - 08	0123	179	249			
		196	YGWC4 - 49d40F196 - 08	0174	228	298			
		100	YGWC2 - 50d40F100 - 08	0049	132	202			
	50	150	YGWC3 - 50d40F150 - 08	0124	182	252			
		200	YGWC4 - 50d40F200 - 08	0175	232	302			
	51	102	YGWC2-51d40F102-08	0050	134	204			
	51		YGWC2-51d40F102-08	12792					

▶ Далее

WCMX 080412 (DC 45~60)

60

180

YGWC3-60d40F180-08

Винт	Ключ
4015-M4x11	80-T15
(27100166)	(27100210)

7GDR!LL

4				H			@	c.191	Ед изм: м	M
Серия	DC	LU	Обозначение	Артикул 3600	LF	OAL	DCON	DCSFMS	LS	
	51	153	YGWC3 - 51d40F153 - 08	0125	185	255				
	52	104	YGWC2 - 52d40F104 - 08	0051	136	206				
	32	156	YGWC3 - 52d40F156 - 08	0126	188	258				
	53	106	YGWC2 - 53d40F106 - 08	0052	138	208				
	55	159	YGWC3 - 53d40F159 - 08	0127	191	261				
	54	108	YGWC2 - 54d40F108 - 08	0053	140	210				
	34	162	YGWC3 - 54d40F162 - 08	0128	194	264				
	55	110	YGWC2 - 55d40F110 - 08	0054	142	212				
*******	23	165	YGWC3 - 55d40F165 - 08	0129	197	267				
WCMX 080412	56	112	YGWC2 - 56d40F112 - 08	0055	144	214	40	54	70	
000 112	30	168	YGWC3 - 56d40F168 - 08	0130	200	270				
	57	114	YGWC2 - 57d40F114 - 08	0056	146	216				
	3/	171	YGWC3 - 57d40F171 - 08	0131	203	273				
	58	116	YGWC2 - 58d40F116 - 08	0057	148	218				
	20	174	YGWC3 - 58d40F174 - 08	0132	206	276				
	59	118	YGWC2 - 59d40F118 - 08	0058	150	220				
	29	177	YGWC3 - 59d40F177 - 08	0133	209	279				
		120	YGWC2-60d40F120-08	0059	152	222				

0134

212

282

Эксцентриковые адаптеры для корпусных сверл

Ед.изм.: мм

Обозначение	Артикул	DCONWS	DCONMS	OAL
YGE-2025	34000001	20	25	44
YGE-2532	34000002	25	32	46
YGE-3240	3400003	32	40	55

MHOOPMALLINA

Сверление - Пластины

Сменные пластины для сверления (SPMX)

	Метри	ческая
Серия	IC	S
SPMX 0502	5.00	2.38
SPMX 0602	6.00	2.41
SPMX 07T3	7,94	3.97
SPMX 0904	9.80	4.30
SPMX 1104	11.50	4.80
SPMX 1405	14.30	5.20

						Apt. 320
SF	MX	Обозначение	Fn (мм/об.)	YG613	YG602	YG713
		SPMX 050204	0.07~0.14	0077	0005	0062
	_	SPMX 060204	0.08~0.14	0078	0006	0063
SPMX		SPMX 07T308	0.08~0.16	0061	0007	0064
Общего назначения		SPMX 090408	0.08~0.16	0079	0008	0065
		SPMX 110408	0.10~0.18	0080	0009	0066
		SPMX 140512	0.10~0.20		0010	0067
		SPMX 050204-ST	0.03~0.10	0070	0011	
- ST Нержавеющая сталь		SPMX 060204-ST	0.04~0.11	0071	0012	
	O	SPMX 07T308 - ST	0.04~0.11	0068	0013	
		SPMX 090408-ST	0.05~0.12	0072	0014	
		SPMX 140512 - ST	0.05~0.14	0074		

Скорость резания						Vc (M/MUH	1.)	
ISO VDI Подгруппа			602		713	177	613	
		The state of the s	Min	Max	Min	Max	Min	Max
	1~5	Нелегированная сталь	180	380	200	300	100	210
P	6~9	Низколегированная сталь	120	300	170	270	70	180
	10~11	Высоколегированная сталь	70	150	85	145	40	90
	12~13	Ферритная и мартенсит. сталь	120	200	-		70	180
М	14	Аустенит. нержавеющ. сталь	130	250		- (-	70	200
ĸ	15~16	Серый чугун	120	250	21	92		3.1
^	17~18	Высокопрочный чугун	130	220	8	9-7	11-	
Н	38~41	Высокотвердые материалы	-	8	0	-	8	8

ФРЕЗЕРНАЯ ОБРАБОТКА ПЛАСТИНЫ И КОРПУСА

Сверление - Пластины

Сменные пластины для сверления (WCMX)

	Метрическая	
Серия	IC	S
WCMX 0302	5.56	2.38
WCMX 0402	6.35	2.38
WCMX 0503	7.94	3.18
WCMX 06T3	9.53	3.97
WCMX 0804	12.70	4.76

				Api. 3200.
W	CMX	Обозначение	Fn (мм/об.)	YG602
WCMX Общего назначения	WCMX 030208	0.05~0.12	0031	
		WCMX 040208	0.05~0.12	0003
	0	WCMX 050308	0.06~0.14	0001
		WCMX 06T308	0.08~0.14	0002
		WCMX 080412	0.08 ~ 0.14	0004

	Скорость резания		Vc (N	/мин.)
ISO	VDI	Подгруппа	YG Min	602 Max
	1~5	Нелегированная сталь	140	380
P	6~9	Низколегированная сталь	120	300
	10~11	Высоколегированная сталь	70	150
	12~13	Ферритная и мартенсит. сталь	120	200
M -	14	Аустенит. нержавеющ. сталь	130	250
	15~16	Серый чугун	120	250
κ -	17~18	Высокопрочный чугун	130	220

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Обозначения по ISO 13399
Переводная табица шкал твердости
Группа материалов
Сравнительные таблицы
ISO ↔ ANSI
Поиск

ISO 13399 Обозначения

AN	Задний угол	INSD	Длина пластины
APMX	Максимальная глубина резания	KAPR	Угол режущей кромки
AS	Задний угол кромки геометрии Wiper	KRINS	Главный угол режущей кромки
В	Ширина хвостовика	KWW	Ширина шпоночного паза
BS	Длина кромки геометрии Wiper	L	Длина режущей кромки
CBDP	Глубина расточки	LE	Полезная длина режущей кромки
CDX	Максимальная глубина резания	LF	Функциональная длина
CICT	Количество пластин	LH	Длина головы
cw	Ширина резания	LS	Длина хвостовика
czc	Код размера соединения		Полезная длина
DC	Диаметр резания	LUX	Максимальная полезная длина
DCON	Диаметр соединения	М	М-Размер
DCSFMS	Диаметр контактной поверхности	OAL	Полная длина
DCX	Максимальный диаметр резания	RE	Радиус при вершине
DMIN	Минимальный диаметр расточки	RMPX	Максимальный угол наклона
DMM	Диаметр хвостовика	RPMX	Максимальная скорость вращения
EPSR	Угол пластины	S	Толщина пластины
н	Высота хвостовика	TDZ	Диаметр резьбы
HAND	Сторона	WF	Функциональная ширина
IC	Диаметр вписанной окружности	ZEFP	Угол перифирийной режущей кромки

Переводная таблица шкал твердости

HB	HRc	HRB	HV	N/mm²
199	15	93	199	667
203	16	94	201	680
208	17	95	210	696
212	18	95	218	706
216	19	96	222	716
223	20	97	227	755
229	21	98	235	775
233	22	99	241	794
240	23	100	247	824
245	24	100	252	838
250	25	101	255	853
255	26	102	258	870
262	27	103	262	880
264	28	103	271	892
271	29	104	277	941
277	30	105	285	971
290	31	106	292	990
300	32	107	303	1020
308	33	107	311	1035
314	34	108	320	1049
322	35	108	332	1089
331	36	109	342	1118
341	37	109	351	1157
348	38	110	361	1187
360	39	111	376	1236
373	40	111	388	1265
375	41	112	393	1314
388	42	113	406	1363
402	43	114	424	1390
415	44	114	438	1422
419	45	114	448	1447
430	46	115	458	1471
445	47	115	474	1520
456	48	116	490	1569
468	49	117	497	
469	50	117	505	
486	51	118	531	
504	52	118	549	
513	53	119	567	
534	54	120	589	
552	55	376	649	
572	56		694	
592	57		727	
601	58		746	
613	59		, 10	
627	60			
642	61			
658	62			
681	63			
695	64			
HB	HRc	HRB	HV	N/mm²

Формулы

Формулы

THE PARTY OF THE P		-
Токарная	Ohna	DOTKS.
IONOPHON	JUDG	COING

Скорость шпинделя (RPM)	Метрическая RPM = Vc × 318.3 ÷ D (об√мин.)	Дюйм RPM = Vc × 3.82 ÷ D (об/мин.)
Скорость подачи (Vf)	Vf = Fn × RPM (мм/мин)	
Подача за оборот (Fn)	Fn = Vf ÷ RPM (мм/об.)	
Частота вращения шпинделя (Q)	Метрическая Q=Vc×Fn×Ap (см³/мин.)	Дюйм Q=Vc×Fn×Ap×12
Время резания	T=L÷Vf (мин.)	

Фрезернная обработка

Подача на зуб (Fz)	Fz = Vf ÷ RPM ÷ Количество зубьев (мм/об.) = Fn ÷ Количество зубьев (мм/об.)	
Частота вращения шпинделя(Q)	Метрическая Q=ApxAexVf÷1000 (см³/мин.)	Дюйм Q = Ap x Ae x Vf
Время резания	T=L÷Vf (мин.)	
Потребляемая мощность (Рс)	Метрическая Pc = Ap x Ae x Vf x Kc x 0.000000017 (kW)	Дюйм Pc = Ap x Ae x Vf x Kc x 0.00000253 (Hp)

Сверление

Потребляемая мощность (Рс)	Метрическая Pc = Fn xVc x D x Kc x 0.0000042 (kW)	Дюйм Pc=Fn x Vc x D x Kc x 0.0000076 (Hp)
Крутящий момент (Мс)	Метрическая Mc = Pc x 9554.1 ÷ RPM (Nm)	Дюйм Mc = Pc x 5255 ÷ RPM
Тяга (Т)	$T = 0.5 \times Kc \times DC/2 \times Fn \times sin KAPR (N)$	

Обозначения

RPM (n)	Частота вращения шпинделя (оборотов в минуту)	
Vc	Скорость резания	
D	Рабочий диаметр	
Vf	Скорость подачи (минутная подача)	
Fn	Подача за оборот	
Ap	Глубина резания	
Q	Скорость съема металла	
L	Длина резания	
T	Время резания (мин.)	

Группа материалов

so	VDI 3323	Описание материала	Состав / Структу	ра / Термообработка	НВ	HRc	Пример	Сп
	Î		Около 0.15% С	Отожженная	125		S15C, C15, 1015	
	2		Около 0.45% С	Отожженная	190	13	— \$45C, C45, 1045	
	3	Нелегированная сталь	Около 0.45% С	Закаленная	250	25	343C, C43, 1043	
	4		Около 0.75% С	Отожженная	270	28	CVE CLUE 1000	
	5		Около 0.75% С	Закаленная	300	32	— SK5, Ck75, 1080	
P	6			Отожокенная	180	10		18
	7	Низколегированная		Закаленная	275	29	CCM40 43C44-4410	
	8	сталь		Закаленная	300	32	SCM440, 42CrMo4, 410	
	9			Закаленная	350	38		
	10	Высоколегированная		Отожженная	200	15	SKD, D2	
	11	сталь		Закаленная	325	35	SKH, SUH, M42	
	12		Феррит. / Мартенс.	Отожженная	200	15	222022	
N	13	Нержавеющая сталь	Мартенситная	Закаленная	240	23	SUS 420, X40Cr13, 420	18
	14		Аустенитная		180	10	SUS 316, 316, X5CrNiMo 17 12 2	
	15	2000	Перлитная / Ферритная		180	10		
	16	Серый чугун	Перлитная (Мартенситная)		260	26	FC, GG, EN-GJL-250	
	17		Ферритная	-	160	3	avarana a	
K	18	Высокопрочный чугун	Перлитная	DOTEO	250	25	FCD, GGG, EN-GJS-500-7	1
	19	S S	Ферритная	KKIIII	130		escolo de la companya de la	
	20	Ковкий чугун	Перлитная		230	21	FCMW, FCMP, GTS, GJMB350-10	
	21	Алюминиевый	Не отверждаемая		60		SAE 1000, AlMg 1, 3.3315	
	22	сплав	Отверждаемая	Закаленная	100		SAE 7050, AlCuMg 1, 3.1325	1
	23		≤ 12% Si, Не отверждаемая		75		ADC12, G-AlSi12, 3.2581	
	24	Алюминиево-литиевый	≤ 12% Si, Отверждаемая	Закаленная	90		C4BS, G-AlSi10Mg, 3.2381	
	25	сплав	> 12% Si, Не отверждаемая	n .	130			
N	26	and the same of	Сплавы, РВ>1%		110		CuZn36Pb 3, 2.0375	- 1
	27	Медь и медиые сплавы	CuZn, CuSnZn (Бронза)		90		CuZn 15, 2.0240	
	28	(Бронза / Латунь)	CuSn, бессвинц. и электро	литич. медь	100		G-CuZn40Fe, 2.0590	
	29	Неметаллические	Дюропласт, пластик				CFRP	
	30	материалы	Каучук, дерево					
÷	31			Отожженная	200	15	X12 NiCrSi 36-16, 1,4864	
	32		Fe	Состаренная	280	30		
	33	Жаропрочные		Отожженная	250	25	Inconel 718, NiCr20TIAI, 2.4631	
s	34	суперсплавы	NI или Co	Состаренная	350	38	NiCu30Al, 2.4375	1
	35			Литье	320	34	G-X120Mn12, 1.3401	- 10
	36	Титановые	Чистый титан		400 Rm			
	37	сплавы	Альфа+Бета сплавы	Закаленная	1050Rm		TiAl6V4, 3.7165	
	38			Закаленная	550	55	SK3	
	39	Закаленная сталь		Закаленная	630	60	120	
Н	40	Отбеленный чугун		Литье	400	42		1
	41	Закаленный чугун		Закаленная	550	55		-

ТОКАРНАЯ ОБРАБОТКА

ДЕРЖАВКИ

ТОКАРНАЯ ОБРАБОТКА АНТИВИБ, ОПРАВКИ

ТОКАРНАЯ ОБРАБОТКА

ОТРЕЗКА И ОБРАБОТКА КАНАВОК

пластины и корпуса

СВЕРЛА И ПЛАСТИНЫ

ПЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

	P	VDI 3323		гированна				ра / Термоо 6 С, Отожж			HB 125	HRc
Mat1 No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	55	UNI	UNE/IHA	UNS	roct	Марки
1.0037	STKM12C	St 37-2		4360 40 B	S235JR	E24-2	1311	Fe 360 B			16Д	
1.0038	STKM 12 A	St 37-3	A570.36	436040C	\$275J2G3	E28-3	1312	Fe360DFF			CT14CTI	
1.0045	SM 490 YA	S 355 JR	-	-	S 1207	E36-2	- +	Fe510BFN				
1.0050	55 50	CT 50-2	A570 Gr. 50	4360 50 B	E295	A50-2	2172	Fe 490			СТБПС	
1.0060	SM 58	CT 60-2	A572 Gr. 65	4360 55 E		A60-2	1650	Fe 60-2			CT6TC	
1.0114		\$235,0	-	En 40C	\$235.0	E24-3		Fe 360 CFN				
1.0143		\$ 275,00		*	5275,00	E28-3	1414	Fe 430 C				
1.0144	SM41C, SM400	CT44-3N	A573 Gr. 81	4360 43C	5 275 J2 G3	E28-3	1412	Fe 430 D FF			CT14CT	
1.0149		RoCT44-2	- 1	43C	S 275 JOH	+	1412	Fe430C				
1.0301	S10C	C10	1010	045M10	C10	34C10, XC10		C10	E1511	G10100	10	
1.0330	SPCC	CT12	*	DC01	FeP01	DC 01/Fe P01	1142	Fe P01			ОВПС	
1.0335	SPHE	DD 13 (CTW 24)	A622(1008)	HS3	DD13	3C		FeP13			OSKITI	
1.0338	SPCE	CT4	A620(1008)	14491CR	FeP04	Fe 14	1147	DC04/FeP04			0810	
1.0345	SPV 50	P235 GH	A516 Gr. 65	P235 GH	P235 GH	A37 CP	1330	Fe E 235		K02503		
1.0401	\$15C	C15	1015	080M15	×	C18RR, XC18	1350	C15, C16	F.1110	G10170	15	
1.0402	S20C	C22	1020	050 A 20	1C22	C20	1450	C20	F.1120	G10200	20	
1.0425	SPV315	P265GH/HII				A42CP	1430	Fe4101KW		K02801	16K	
1.0443	SC 450	GS-45	A2765-35	A1		E23-45M	1305	_				
1.0539		S355NH				TSE355-4	2134	Fe510B				
1.0545		\$355N		4360-50E		E355R	2334	FeE355KG				
1.0546		\$355NL		4360-50EE		E355FP	2135	FeE355KT				
1.0547		\$355JOH		4360-50C		TSE355-3	2172	Fe510C				
1.0549		S3S5NLH					2135	Fe510D				
1.0553	SM 520 M	CTS2-3U	A14890-40	4360-50C		320-560M	1606	Fe510C				
1.0562	5M490A	CTE355	A633 Gr. C	P355 N		FeE355KGN	2132	Fe E 355 KG		K12000	15 r Φ	
1.0565		WCTE355		P355 NH		P355 NH	2106	Fe E 355 KW		K01600		
1.0566	SLA 37	TCTE355		P355 NL1		P355 NL1	2107	Fe E 355 KT				
1.0570	SM 50YA	CT 52-3	1	4360-50 C	S355JR	E36-3	2172	Fe510B			17/10	
1.0715	SUM22	95Mn28	1213	230M07		S250	1912	CFSMn28	F2111	G12130		
1.0718	SUM22L	9SMnPb28	12L13			\$250Pb	1914	CF9SMnPb28	F2112	G12134		
1.0721		10520	1108	10520		10520		CF10520	F.2121	G11080		
1.0722		105Pb20	11L08			10PbF2		CF10SPb20		G11084		
1.0736	SUM25	95Mn36	1215			\$300		CF9Mn36	F2113	G12150		
1.0737		9SMnPb36	12L14			5300Pb	1926	CF9SMnPb36	F2114	G12144		
1.0972		5315MC		1501-40F30		E315D						
1.0976		S355MC		1501-43F35		E355D	2642	FeE355TM				
1.0982		S460MC		1501-50F45								
1.0984		S500MC				E490D	2662	FeE490TM				
1.0986		S500MC		1501-60F55		E560D		FeE560TM				
1.1121	S10C	Ck10	1010	040A10		XC10	1265	C10	F.1510	G10100	10	
1.1141	515	Ck15	1015	040A15	32C	XC15	1370	C15	F.1110	G10150	15	
1.1151	S20C	C22E	1020	055M15		2022	1450	(20)	F.1120	G10230	20	
1.8900	S25C	CTE380	A572-60	436055E			2145	FeE390KG				
		CT44-2	A36	436043A		NFA35-501E28	1411	3.00700				
		CTE320-3Z	100	1501160		Lagrange Water	1421					

Группа материалов

	P	VDI 3323	0.4	сание матер гированная				ра / Термос с, Отожж			190	HRc 13
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	ES	EN	AFHOR	55	UNI	UNE/IHA	UNS	IOCT	Марки
1.0501	\$35C	G5	1035	080A32		1C35	1572	C35	E113	G10350	35	
1.0503	S45C	C45	1045	060A47		XC42H1TS	1672	C45	F.114	G10450	45	
1,0511	540C	C40	1040	080M40		1C40		C40	E114A	G10400	40	
1.0540	550C	C50					1674	C50		G10500		
1.0551		GS-52	A2770-36	A2		280-480M	1505					
1,0553	SM 520 M	St52-3U	A14880-40	4360-50C		320-560M	1606	Fe510C				
1.0577		5355J2G4	A738	Fe510D2FF		A52FP	2107					
1.0726		35520	1140	212M36	8M	35MF6	1957			G11400	40	
1.0727		45S20	1146			45MF4	1973			G11460		
1.1157		40Mn4	1039	150M36	15	40M5				G10390	401	
1.1158	S25C	C25E	1025	070M25		XC25		C25	F.1120	G10250	25	
1.1166	SMn433H	34Mn5	1536						TOLB	G15360		
1.1167	SMn438(H)	36Mn5	1335	150M36		40M5	2120	36Mn6	F.1203	G13350	35Г2	
1.1170	SCMn1	28Mn6	1330	150M28	144	20M5		C28Mn	28Mn6	G13300	300	
1,1178	530C	C30E		080M30		XC32		C30	2C30	G10300		
1.1180		C35R	1035	080A35		3C35	1572		E1135	G10350		
1.1181	S35C	C35E	1035	080A35		XC38	1572	C36	F.1130	G10340	35	
1.1191	S45C	Ck45	1045	080A46		XCAS	1672	C45	E1140		45	
1.1206	\$50C	C50E	1050	080MS0		2C50	1674	C50		G10500	50	
1.1213	SSOC	CI53	1050	070M55		XC48HTS	1574	C53		F10500	50	

	2	3	1	ированна				% С, Отожже			250	25
Mat'l No.	JIS	DIN	AISVASTIM/ SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	FOCT	Марки
1,0481	SG365	17 Mn 4/P 295 GH	A516 Gr. 70	224-4608	P 295 GH	A48CP	2102	Fe E 295	A47RCI	K03501	14/2	
1,0501	S35C	C35	1035	080A32		1C35	1572	C35	F.1130	G10350	35	
1.0503	S45C	CA5	1045	060A47		XC42H1TS	1672	C45	F.1140	G10450	45	
1.0614		C76D	1074			XC75				G10750		
1.0616		C86D	1086			XC80		CBS		G10860		
1.0618		C92D	1095			XC90				G10950		
1.0726		35S20	1140	212M36	8M	35MF6	1957			G11400	40	
1.1157		40Mn4	1039	150M36	15	40M5				G10390	400	
1.1165	SMn433H	30MnS	1036	120M36		35M5		30Mn5	F.8211	K13300	3012	
1.1167	SMn438(H)	36Mn5	1335	150M36		40MS	2120	36Mn6	F.1203	G13350	35Г2	
1.1186	540C	C40E	1040	060A40		2C40		C40		G10400		
1.1191	SASC	Ck45	1045	080M46		2C45	1672	C45	F.1140		45	
1.1201	550C	C45R	1049	080M46		3C45	1660	C45	E1145		3800M	
1.1213	550C	CI53	1050	070M55		XC48HTS	1674	C53		G10500	50	
1.7242	SCM418H	18CrMo4										
1,7337		16CrMo4-4	A387 Gr.12					A18CrMo45KW		K11564	15XM	
1.7362	SCMV6	12CrMo195		3606-625		Z10CD5-05		16CrMo205		K41545		
		17MnV6	A572-60	436055E		NFA35-501E36	2142					

EXHIVECT HOPMAL

198

СВЕРЛА И ПЛАСТИНЫ

CIPESKA M OSPASOTKA KAHABOK

199

Техническая информация

	P	VDI 3323		сание матер прованна:				ра / Термоо с, Отожж			HB 270	HRc 28
Mat'i No.	JIS	DIN	AISVASTAV SAE	BS	EN	AFNOR	55	UNI	UNE/IHA	UNS	roct	Марки
1.0603	S 70 C -CSP	C67	107	080A67		XC65		C67		G10700		
1.0605		C75	1075	144980HS				C75		G10740	75	
1.1203	SS5C	CkSS	1055	060A57		2C55	1655	CSS	F.1150	G10550	55	
1.1209		C55R	1055	070M55		3C55		C55	F.1155	G10550		
1.1221	SS8C	Ck60	1060	060A62	43D	2060	1678	C60	E1150	G10640	60	
1.1231	S 70 C-CSP	C67E	1070	060A67		XC68	1770	C70	F5103	G10700	65FA	
1.1248	C75	C75E	1074	060A78		XC75	1774	C75	F.5107	G10800	75	
1,1269	SK5-CSP	CB5E	1086			XC90		C90		G10900	85	
1.1274	SUP4	Ck101	1095	060 A 96	C 100S	XC100	1870	C100	F5117	G10950		
1.1545	SK3	C105W1	W1	BW 2	C105U	Y1 105	1880	C 100 KU	F5118		Y10A	
1.1663	SK2	C125W	W112			Y2120					Y13	

		VDI 3323		сание матер прованная				ра / Термос 6 С, Закал			300	HRc 32
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	55	UNI	UNE/IHA	UNS	roct	Марки
1.0070		St 70-2	1055	Fe690-2FN	1.	A70-2	1655	Fe 690	F.1150		55	
1.0535	SS5C	CSS	1055	070M55		1C55	1655	C55		J05000	55	
1.0601	S58C	C60	1060	060A62	43D	1C60		C60		G10600	60	
1.1203	SSSC	CkSS	1055	060A57		2C55	1655	CSS	E1150	G10550	55	
1.1221	S58C	Ck60	1060	060A62	43D	2C60	1678	C60	E1150	G10640	60	
1.1274	SUP4	Ck101	1095	060 A 96	C 100S	XC100	1870	C100	F5117	G10950		
1.1545	SK3	C105W1	W1	BW2	C105U	Y1 105	1880	C100 KU	F5118		У10A	
1.1663	SK2	C125W	W112			Y2120					У13	
1.5120		38MnSi4										
15710	SNC236	36NICr6	3135	640A35	111A	35NC6						
1.7701		51CrMoV4						51CrMoV4				

TOKAPHAN OEPABOTKA

ТОКЛЕНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА АНТИВИБ, ОПРАВИИ

ТОКАРНАЯ ОБРАБОТКА ОТРЕЗКА М ОБРАБОТКА КАНАВОК

плустиня и корихси

Техническая информация

Группа материалов

	P	VDI 3323		исание матер пегированн		Состав		ура / Термоок жженная	бработка		180	HRc 10
Mat'l No.	JIS	DIN	AISI/ASTIN/ SAE	BS	EN	AFROR	22	UNI	UNE/IHA	UNS	гост	Марки
1.0116		St37-3	A570 Gr. 36	4360-40C	\$235,I2G3	E24-3	1312	Fe 360 D1(2)	AE235D		СТЗКР	
1.0904	SKH1,SKT4	55SI7	9255	250A53	45	5557	2085	55518	56517	G92550	55C2	
.0961	SUP7	60SICr7	9262			60SC6		60SICr8	60SICr8	G92620		
2067		100Cr6	13	BL3		Y100C6			10006			
.2108		90Cr515	LI				2092	105WCR5				
1.2210		115CA/3	12			10003		107CrV3KU	F520L		11X0	
1.2241		51CrV4										
1,2330	SCM435TK	35CrMo4	4135	708A37		34CD4	2234	35CrMo4			35XM	
1.2419	SKS31	105WCr6		105WC13		105WC13	2140	10WGr6			ХВГ	
1.2510	SKS3	100MnCrW4	01	BO1		90MWCV5	2140	95 MnWCr5 KU	F.5220		9 XBC	
1,2542		45WCAV7	51	BS1		24.00.00	2710	45WGV8KU	.,		5XB2C	
1.2550		60WCrV7	SI	-		55WC20	2710	58WCr9KU			5XB2C	
1.2713	SKT4	55NiCrMoV6	1.6			55NCDV7	27.10	sortana	F.520S		5XHM	
1,2721	307	50NIC/13	1.6			55NCV6	2550		F528		3/4/11/1	
V 1000		90MnCtVB		BO2		7507	2000		1320	T31502	9(20)	
1.2842			02	BO2		90MV8				131302	91.20	
1.3501	et to	100Cr2	E50100	2012			****	1005.4	Fine		una	
1.3505	SUJ2	100Cr6	52100	25135	31	100C6	2258	100Cr6	F.1310		ШХ15	
1.5024		46Si7	20001		67.	4557	6151	46SI7	F.1451			_
1.5025		51Si7	9259H		50577	5157	2090	50517	F.1450			
1.5026		55Si7			56\$17	5557	2085	55517	F.1440	G92550	55C2	
1.5027		60Si7	9260	251A60	60SI7	60\$7		60Si7	F.1441	G92600	60C2	
1.5028	SUP7	65Si7	9260H									
1.5415	CTFA 12	15Mo3	A204Gr,A	1503-2438		15D3	2912	16Mo3(KG)	F.2601	K11820		
1.5419	SCPH11	20Mo4	4419	1503-243-430			2512	G20Mo5		G44190		
1.5423	SB450M	16Mo5	4520	1503-245-420				16Mo5(KG)	F2602	K11522		
1.5622		14Ni6	A350-LF5			16N6		14Ni6(KG)	F.2641			
1.5732	SNC415(H)	14NilCr10	3415			14NC11		16NiCr11				
1.5752	SNC815(H)	14NIC14	3310	655M13	36A	12NC15					20ХН4ФА	
1.6511	SUP10	36CrNiMo4	9840	816M40	110	40NCD3		36NiCrMo4(KB)			40XH2MA	
1.6523	SNCM220(H)	21NKrMo2	8620	805M20	362	20NCD2	2506	20NICrMo2			20X/1HM	
1.6546	SNCM240	40NiCrMo2-2	8740	311-Tyre7				40NiCrMo2(KB)			38ХГНМ	
1.6566		17NiCrMo6-4										
1.6587		17CrNiMo6		820A16		18NCD6		14NiCrMo13				
1.6657		10NiCrMo13-4						14NiCrMo131				
1.7015	SCr415(H)	10Cr3	5015	523M15		12C3				G50150	15X	
1.7033	SCr430(H)	34Cr4	5132	530A32	188	32C4		34Cr4(KB)		G51300	35X	
1,7035	SCr440(H)	41Cr4	5140	530M40	18	42C4	2245	41C/4		G51400	40X	
1.7131	SCR415	16MnCr5	5115	527M17	17.	16MC5	2511	16MnCr5		G51150	18XT	
1.7139		16MnCrS5	2118			1711100	2127			200.00	18XF	
1.7176	SUP9(A)	55C/3	5155	527A60	48	55C3	2253	550/3			50XTA	
-	SCM420	25CrMo4	4130	CDS110	10	25004	2225	25CrMo4(KB)			20XM	
1.7218		34CrMo4				35CD4					35XM	
1.7220	SCM432	111777	4135	708 A 37		33(1)4	2234	34CrMo4				
1.7223	SNB22-1	41CrMo4	4142	7001110	nou.	10.00	2011	41CrMo4			40ХФА	
1.7225	SCM 440 (H)	42CrMo4	4140	708 M 40	42 CrMo4	42 CD 4	2244	42 CrMo 4	F.1252		38XM	
1.7228	- C	55NICrMoV6G		823M30	33		2512	653M31				
1,7262	SCM415(H)	15CrMo5				12CD4	2216	12CrMo4				
1.7321		20mOcR4					2625					
1.7335	SCM415(H)	13CrMo4-4	A182-F11	1501-620		15CD4-5	2216	14CrMo45			12XM	
1.7361		32CrMo12		722M24	408	30CD12	2240	30CrMo12	F.124A			
1.7380		10CrMo9-10	A182F22	1501-622		12CD9-10	2218	12CrMo9			10X2M	

TEXHINHECH MH@OPMAL

СВЕРЛЕНИЕ СВЕРЛЕНИЕ

	•	VDI 3323		егированна		Состав		ра / Термоо кженная	бработка		180	HRc 10
Mat'i No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	55	UNI	UNE/IHA	UNS	TOCT	Марки
1,7715		14MoV6-3		1503-660-440				13MoCrV6				
1.8159	SUP 10	50C/V4	6150	735A50	47	50C/V4	2230	50GV4		G61500	50XTOA	
1.8161		58CrV4										
1.8509	SACM 645	41CrAlMo7	A355A	905M39	41B	40CAD6-12	2940	41CrAlMo7				
1.8523		39CrMoV13-9		897M39	40C			36CrMoV12				

	P	VDI 3323	1000	исание матер пегированна		Состав		/ра / Термооб аленная	работка		HB 275	HRc 29
Mat'i No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	55	UNI	UNE/IHA	UNS	rocr	Марки
1,5415	STFA 12	15Mo3	A204GrA	1503-243B		15D3	2912	16Mo3(KG)	F.2601	K11820		
1.5423	58450M	16Mo5	4520	1503-245-420				16Mo5(KG)	F2602	K11522		
1.5622		14Ni6	A350-LF5			16N6		14Ni6(KG)	F2641			
1.5732	SNC415(H)	14NIICr10	3415			14NC11		16NiCr11				
1.5752	SNC815(H)	14NiCr14	3310	655M13	36A	12NC15					20XI-I40A	
1.5755	SNC236	31NiCr14		653M31	Ini	18NC13	2534		F.1270			
1.6565	SNCM447	40NiCrMo6	4340	817M40	24	35NCD6	2541	35NiCrMo6(KB)			40XH2MA	
1.5587		17CrNiMo6		820A16		18NCD6		14NiCrMo13				
1.6657		10NiCrMo13-4						14NiCrMo131				
1.6957		26NICrMoV14-5										
1.7015	SCr415(H)	10Cr3	5015	523M15		12C3				G50150	15X	
1.7262	SCM415(H)	15CrMo5				12CD4	2216	12CrMo4				
1.7335	SCM415(H)	13CrMo4-4	A182-F11	1501-620		15CD4-5	2216	14CrMo45			12XM	
1.7380		10CrMo9-10	A182F22	1501-622		12CD9-10	2218	12CrMo9			10X2M	
1.7715		14MoV6-3		1503-660-440				13MoCrV6				
1.7733		24CrMoV55				20CDV6		21CrMoV511				
1.7755		GS-45CrMoV10-4										
1,8070		21CrMoV511						35NICr9				

	2	8		егированн		COCIA		ра / Термоог аленная	ораоотка		300	32
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	TOCT	Марки
1.1730		C45W3	C45W			XC48						
12332	SCM(440)	47CrMo4	4142	708M40	19A	42CD4	2244	42CrMo4				
1.5736	SNC 631 (H)	36NiCr10	3435			30NC11						
1,6523	SNCM220(H)	21NiCrMoZ	8620	805M20	362	20NCD2	2506	20NiCrMo2			20XTHM	
1.7033	SCr430(H)	34Cr4	5132	530A32	188	32C4		34Cr4(KB)		G51300	35X	
1.7218	SCM420	25CrMo4	4130	CDS110		25004	2225	25CrMo4(KB)			30XMA	
1.8515		32CrMo12		722M24	408	30CD12	2240	32CrMo12	F.124A			

ТОКАРНАЛ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА АНТИВИБ, ОПРАВИИ

ТОКАРНАЯ ОБРАБОТКА ОТРЕЗКА И ОБРАБОТКА РЕЗИМ КАНАВОК

пластины и корпуса

Техническая информация

Группа материалов

	P	VDI 3323	40	сание мате егирован		Состав		ура / Термооб каленная	работка		HB 350	HRc 38
Mat'i No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	22	ÜNI	UNE/IHA	UNS	roct	Марки
1.0904	SKH1,SKT4	55Si7	9255	250A53	45	5557	2085	55Si8		G92550	55C2	
1.0961	SUP7	60SiCr7	9262			60SC6		60SiCr8		G92620		
1.2067		100Cr6	L3	BL3		Y100C6		100Cr6				
1.2419	SKS31	105WCr6		105WC13		105WC13	2140	10WCr6			ХВГ	
1.2542		45WC/V7	SI	BS1			2710	45WCV8KU			5XB2CΦ	
1.2713	SKT4	55NiCrMoV6	L6			55NCDV7			F.520S		5XHM	
1.4882		X50CrMnNiNbN219				Z50CMNNb21-09						
1,5120		38MnSI4										
1.5710	SNC236	36NiCr6	3135	640A35	111A	35NC6						
1.5755	SNC236	31NiCr14		830m31		18NC13	2534		F.1270			
1.6511	SUP10	36CrNiMo4	9840	816M40	110	40NCD3		36NiCrMo4(KB)			40XH2MA	
1.6546	SNCM240	40NiCrMo2-2	8740	311-Tyre7				40NiCrMo2(KB)			40XTHM	
1.7035	SCr440(H)	41Cr4	5140	530M40	18	42C4	2245	41Cr4		G51400	40X	
1.7176	SUP9(A)	55Cr3	5155	527A60	48	55C3	2253	55Cr3			50XTA	
1,7220	5CM432	34CrMo4	4135	708Aa37		35CD4	2234	34CrMo4			35XM	
1.7223	SNB22-1	41CrMo4	4142					41CrMo4			40XOA	
1.7225	SCM 440 (H)	42CrMo4	4140	708 M 40	42 CrMo4	42CD4	2244	42 CrMo 4	F.1252		38XM	
1.7361		32CrMo12		722M24	408	30CD12	2240	30CrMo12	F.124A			
1.8159	SUP 10	50CN4	6150	735A50	47	50CrV4	2230	50CrV4	51C/V4	G61500	SOXTOA	
1,8161		58044										
1.8509	SACM 645	41CrAlMo7	A355A	905M39	41B	40CAD6-12	2940	41CrAlMo7				
1.8523		39CrMoV13-9		897M39	40C			36CrMoV12				

	P	VDI 3323		сание мате пегирован	риала ная сталь	Состав		ура / Термооб эжженная	іработка		HB 200	HRc 15
Mat'l No.	JIS	DIN	AISI/ASTIN/ SAE	BS	EN	AFNOR	ss	UNI	UNE/IRA	UNS	гост	Марки
1.0347	SPCD SUM32	RR St 3 15522	A619	CR3 210A15	Fe P03	F13	1922	DC03/FeP03	F.210F		08IC	
1.2080	SKD1 SCR420H	X210Cr12 21MnCr5	D3	BD3	X210Cr12	Z200C12 20MC5		X205Cr12KU		T30403	X12	
1.2311		40CrMnMo7 40CrMnMoS8.6	P20+5			40CMD8 40CMD8S		35cRmÓBKU				
1.2316	SKD 6	X36CrMo17 X38CrMoV5-1	Hii	BH11	X38CrMo16	Z38CDV5		X37CrMoV51KU		T20811	4XSMΦC	
1.2344	SKD61 SKD12	X40CrMoV5-1 X100CrMoV5-1	H13	BH13 BA2		Z40CDV5 Z100CDV5	2242 2260	X40CrMoV511KU X100CrMoV51KU	F.5318 F.5227	T20813	4X5МФ1С 9X5ВФ	
1.2379 1.2436	SKD11 SKD2	X155CrVMo121 X210CrW12	D2 D4(D6)	BD2 BD6		Z160CDV12 Z200CD12	2310 2312	X165GMoW12KU X215GW121KU	F5213	T30402	X12МФ X12ВМФ	KRUPP2379

Далее >

СВЕРЛЕНИЕ

203

Техническая информация

	P	VDI 3323 10		сание матер пегировани		Состав		ура / Термооб жженная	работка		HB 200	HRc 15
Mat'l No.	JIS	DIN	AISVASTM/ SAE	BS	EN	AFNOR	525	UNI	UNE/IHA	UNS	roct	Марки
1.2510	SKS3	100MnCrW4	01	BO1		90 MWCV 5	2140	95 MnWCr 5 KU	F.5220		9ХВГ	
1.2581	SKDS	X30WC/V9-3	H21	BH21		Z30WCV9		X30MC4A33KN	F.526	T20821	3X288Φ	
1.2601		X165CrMoV12					2310	X160CrMoV12			Х12МФ	
1.2606	SKD 62	X37CrMoW51	H12	BH12		Z35CWDV5		X35CrMoW05KU	F.537	T20812	4Х5МФС	
1.2764		X19NiCrMo4										
1.2767		X45NiCrMo4				45NCD16		40NK/MoV8KU				
1.2842		90MnCrV8	02	B02		9VMV8		90MnVCr8KU		T31502	9Г2Ф	
1.3243	SKH55	56-5-2-5	T15			KCV06-05-05-04-02	2723	H56-5-2-5			P6M5K5	
1.3249	SKH3	S18-1-2-5	T4	BT4		Z80WKCV18-05-04					P18K5Ф2	
1.3343	SKHS1, SKH9	\$6-5-2	M2	BM2		Z85WDCV	2722	HS652	F.5604		P6M5	
1.3348	SKH 58	S2-9-2	M7			Z100DCWV09-04-02	2782	HS292	F.5607			
1.3355	SKH2	S18-0-1	Ti	BT1		Z80WCV18-4-01					P18	
1.4718	SUH1	X45Q/SK9-3	HNV3	401545	52	Z45CS9		X45CrSi8	F322		40X9C2	
1.5662	SL9N60(53)	X8Ni9	ASMA353	502-650		9Ni		X10Ni9	F2645			
1.5680		12Ni19	2515	12Ni19		Z18N5						

	P	VDI 3323		сание мате пегирован	риала ная сталь	Состав /		ура / Термооб каленная	работка		HB 325	HRc 35
Mat'l No.	JIS	DIN	AISVASTAV SAE	85	EN	AFNOR	55	UNI	UNE/IHA	UNS	FOCT	Марки
1.2080	SKD1	X210G/12	D3	BD3	X210Cr12	Z200C12		X205Cr12KU		T30403	X12	
1,2344	SKD61	X40CrMoV5-1	H13	BH13		Z40CDV5	2242	X40CrMoV511KU	F.5318	T20813	4Х5МФ1С	
1.2363	SKD12	X100CrMoV5-1	A2	BA2		Z100CDV5	2260	X100CrMoV51KU	F.5227		9X5BD	
1.2436	SKD 2	X210CrW12	D4(D6)	BD6		Z200CD12	2312	X215GW121KU	F5213		X12BM	
1.2581	SKD5	X30WCiV9-3	H21	BH21		Z30WCV9		X30WCv93KU	F526	T20821	3Х2В8Ф	
1.2601		X165CrMoV12					2310	X160CrMoV12			X12MO	
1.2714	SKT 4	55NiCrMoV7	6F3/L6			55NiCrMoV7			F.520S		5XHM	
1.3202		S12-1-4-5		BT15				HS12-1-5-5				
1.3207		510-4-3-10		BT42		Z130WKCDV						
1.3243	SKH55	56-5-2-5	T15			KCV06-05-05-04-02	2723	HS6-5-2-5			P6M5K5	
13246		57-4-2-5	M35			Z110WKCDV07-05-04		HS7-4-2-5				
1.3247	SKH 51	S2-10-1-8	M42	BM42		Z110DKCWV09-08-04		H52-9-1-8			P2AM9K5	
1.3255	SKH3	518-1-2-5	T4	BT4		Z80WKCV18-05-04					P18K5Ф2	
1.3343	SKH51, SKH9	56-5-2	M2	BM2		Z85WDCV	2722	H5652	F.5604		P6M5	
1.3348	SKH 58	52-9-2	M7			Z100DCWV09-04-02	2782	HS292	F.5607			
1.3355	SKH2	518-0-1	n	BT1		Z80WCV18-4-01					P18	
1.4718	SUH1	X45CrSi9-3	HNV3	401545	52	Z45CS9		X45CrSi8	F322		40X9C2	
1.4935	SUH 616	X20CrMoWV121	422							542200		
1.5680		12NI19	2515	12N 19		Z18N5						

Группа материалов

I	V	VDI 3323 12		сание мате жавеющая				ура / Термооб генситная, О		ная	HB 200	HRc 15	INACTMEN
Ver'l No.	JIS	DIN	AISVASTIN/ SAE	115	EN	AFROR	35	UNI	UNE/IRA	UNS	roct	Марки	FINION
.4000	SU5403	X6Cr13	403	403517		Z6C13	2301	X6Cr13	F3110	540300	08X13	ATI 4105	7
.4001	200.000	X7C/14	4105	40357		Z8C13	2301		F.8401	2000	08X13		ДЕРЖАВКИ
.4002 .4005	SUS 405	X6CrAl13	405	405517		Z6CA13	2302	X6C/Al13 X12C/SC13	F2411	540500		ATT 414	景
4006	SUS416 SUS410	X12Cr13	416	416521 410521	S6A	Z110F13 Z10C13	2380	X12Cr13	F3411 F3401	541600 541000	12X13	ATI 416	30
4016	SUS430	X6Cr17	430	430515	XBCr17	Z8C17	2320	X8Cr17	F3113	543000	12X17	ATI 430	5
4027	SCS2	GX20Cr14		420C29		Z20C13M	-	100			20Х13Л		- 7
1028	SUS420J2	X30Cr13	420	420545		Z30C13	2304			S42020	30X13		-
034	SUS420J2	X46Cr13		420545		Z40C14		X40Cr14	F.3405				
1057	SUS431	X19CrNI17-2	431	431529	57	Z15CN16-02	2321	X16CrN116	F3427	543100	20X17H2	431 (HT)	-
1086		GX120Cr29		452C11									5
1104	SUS430F	X12CrMoS17	430F	420537		Z10CF17	2383	X10CrS17	F3117	543020			2
112	SUS 440 B	X90CrMoV18	440B							544003	95X18MΦ		100
113	SUS434	X6CrMo17	434	434517		Z8CD17-01	2325	X8CrMo17		S43400		AL434	9
313	SCSS	X3CrNi13-4	CA6-NM	425C11		Z4CND13-04M	2385	(G)X6CnNi304		J91540			PAB
340		GX40CrNi274								J92615			АНТИВИБ. ОПРАВКИ
417		X2CrNiM0Si195	S31500			444	2376			S39215		1	
418	2.0000	X4CrNiMo165	tana.			Z6CND16-04-01	2387	Total Marie	-8	- 1000	Tables	APX4	
510	SUS430LX	X6CrT17	XM8			Z4CT17		X6CrT17	F3115	543035	08X17T	430TI	70
511	SUS430LK	X6CrNb17	400	11400		Z4CNb17		X6CrNb17	F3122	C40000		AXC525	III.
512	SUH409	X6C/T112	409	LW19		Z3CT12		X6C/T112		540900			立
720 724	SUS 405	X20CrMo13 X10CrA113	405	403517	4 6	710012		X10CrA112	F311		10X13CIO		S
742	SUS430	X10CrA118	430	439515	60	Z10C13 Z10CAS18		X8Cr17	F3113	543000	15X18GO		Š
747	SUH4	X80G/NISi20	HNV6	443565	59	Z80CSN20-02		X80CrSiNi20	F320B	565006	ISAIOGO		PESUSI NAMOCUT
749	Julia	X18CrN28	446	11000	35	LINCOITES VE		Moderate	12200	30,000	15X28		
762	SUH446	X10CrA124	446			Z10CAS24	2322	X16Cr26		S44600	127.44		
871	SUH35,SUH36	X53CrMnNIN21-9	EV8	349554		Z52CMN21-09		X53CrMnNIN219		563008	55X20Г9АН4		
		X10CrNI15	429										
		X12CrNi18-9	302	302531		Z10CN18-09	2330						EAH.
		VDI 3323	Опи	сание мате	риала	Состав	/ Структ	ура / Термооб	работка		НВ	HRc	NBOK
	VI I	13	Hep	жавеющая	сталь	Ma	ртенсит	ная, Закален	ная		240	23	KAHABOK
atil lo.	115	DIN	AISI/ASTN/ SAE	15	EN	AFNOR	22	UNI	UNE/UIA	UNS	nict	Марки	
000	SU5403	X6Cr13	403	403517		Z6C13	2301	X6Cr13	F3110	540300	08X13	ATI 4105	плустиня и концасу
1001		X7Cr14	4105	40357		Z8C13	2301		F.8401		08X13		포
006	SUS410	X12Cr13	410	410S21	56A	Z10C13	2302	X12Cr13	F3401	541000	12X13	ATI 410	5
016	SUS430	X6Cr17	430	430515	X8Cr17	Z8C17	2320	X8Cr17	F3113	543000	12X17	ATI 430	Q.
021	SUS 420J1	X20Cr13	420	420537		Z20C13	2303	14210	F.5261	542000	20X13	ATI 420	3
027	SCS 2	GX20Cr14		420C29		Z20C13M					20X13/I		53
031	SUS 420.J2	X40Cr13	420			Z40C14	-2304		F3404	S42080	40X13		
1034	SUS420J2	X46Cr13		420545		Z40C14		X40Cr14	F.3405				-
057	SU5431	X19CrNi17-2	431	431529	57	Z15CN16-02	2321	X16CrNi16	F.3427	\$43100	20X17H2	431 (HT)	里
104	SUS430F	X12CrMoS17	430F	420537		Z10CF17	2383	X10G/S17	F3117	543020		20.00	2
1113	SU5434	X6CrMo17	434	434517		Z8CD17-01	2325	X8CrMo17		543400		AL434	3
313	SCSS	X3CrNi13-4	CA6-NM	425C11		Z4CND13-04M	2385	(G)X6CrNi304		J91540	*****		3
544		A700	321	5.524		Z10CNT1811		X6CrNII1811		J92630	08X18H10T	ATT 9.00	СВЕРЛА И ПЛАСТИНЫ
546	CHECCHEC	X5CrNINb18-10	348	347531		Tractition on		X6CrNINb1811		J92640	CCVnormania	ATI 348	臣
871	SUH35,SUH36	X53CrMnNiN21-9	EV8	349554		Z52CMN21-09	2217	X53CrMnNiN219		\$63008	55X20F9AH4		
922 923		X20cRmV12-1 X22CrMoV121					2317	x20cRmOnl1201				Jethete X20	≨;
1243		ACCUIVING [2]											

ТОКАРНАЯ ОБРАБОТКА

	V/	VDI 3323		сание мат		COCIAB		ура / Термооб	padurka		HB	HRc
	VI	14	Нер	жавеюща	я сталь		Ayo	тенитная			180	10
Mae'l No.	JIS:	DIN	ALST/ASTAV SAE		H	AFNOR	SS	ЙИ	UNE/IHA	UNS	ioct	Марки
A301	SUS 304	X5CrNi18-10	304	304515		Z5CN18-09	2332		F3551	530409	08X18H10	- 100
A305	SU5303	X10CrNI\$18-10	303	303521	58M	Z8CNF18-09	2346	X10C/NIS18.09	F3508	530300	12X18H9	ATI 303
1.4306	SCS19	X2CrNi1911	304L	304C12	X3CrN1810KD	Z2CN18-09	2352	GX2Cn\\1910	F3503	530403	03X18H11	ATT 304L
A308	SUS304L	GX6CrNi18-9	CF-8	304C15	58E	Z6CN18-10M	2333					CF-8
.4310	SUS 301	X10C/Ni18-8	301	301521		Z12CN17-07	2331	X2C/Ni1807	F3517	530100	07X16H6	ATI 301
.4311	SUS304LN	X2CrNiN1810	304LN	304562		Z2ON18-10	2371	X2CrNiN1810	F3541	\$30453	03X18H11	
A312	SCS12	GX10CrNi188	305	302C25		Z10CN18-9M					10Х18Н9Л	ATI 305
A350	SU5304	XSCANI18-9	304	304515	58E	Z6CN18-09	2332	X5CrNi1810	F3551	530400		ATI 304
A362		X2CrNiN234	532304			Z2CN23-04AZ	2327			\$32304		ATI 2304TI
A371		X3CrMnNIN18887	202	284516		Z8CMN18-08-05						
1.4401	SUS316	X5CrNiMo17-12-2	316	316513		Z3CND17-11-01	2347	X5CrNiMo17 122	F3534	531600	08X16H11M3	ATI 316
.4404	SUS316L	X2CrNiMo17-13-2	316L	316511		Z2CND17-12	2348	X2CrNiMo1712	F3533	531603		ATI 316L
.4406	5U5316LN	X2CrNIMoN17122	316LN	316561		Z2CND17-12AZ		X2CrNiMoN1712	F3542	531653	03X16H15M3	ATI 316LN
.4408	SCS14	GX6CrNIMo18-10	CF-8M	316C16			2343	X7CrNiMo2010	F.8414	J92900	03X17H14M3	
1.4410	SCS 14A	GX10CrNiMo18-9				Z5CND20-12M	2328			532750		
1.4429	SUS316LN	X2CrNiMoN17-13-3	316Ln	316562		Z2CND17-13AZ	2375	XXCrNIMoN17133	F3543		03X16H15M3	
.4435	SUS316L	X2CrNiMo18143	316L	316511		Z3CND17-12-03	2375	X2CrNiMo17 13 2	F3533	\$31603	03X17H14M3	
A436	SUS316	X3C/NIMo17-13-3	316	316519		Z6CND18-12-03	2343	X5CrNiMo17 122	F3543	531600		
.4438	SUS317L	X2CrNiMo18164	317L	317512		Z2CND19-15-04	2367	X2CrNiMo18164	F3539	531703		ATI 317L
.4439		X2CrNiMoN17135	(\$31726)			Z3CND18-14-06AZ						
.4440		X2CrNiMo18-16						1 /				
A449	SUS317	X5CrNiMo17133	317	317516	-1 KI		3 6	X5CrNiMo1815		531700		ATI 317
.4460	SUS 329 J1	X8CrNiMo275	329				2324			532900		10RE51
.4462	SU5329J3L	X2CrNIMoN2253		318513		Z3CND22-05Az	2377			531803		ATT 2205TA
.4500	***************************************	X7NiCrMoCuNb2520		4.34.0		23NCDU25-20M				J95150		
I.4521	SUS444	X2CrMoTi18-2	443444			1917919	2326	X2CrMoTiNb182	F3123	110011		
A539		X1NiCrMoCuN25205				Z2NCDU25-20	2562	100000000	,,,,,,,,,,	N08904		ATT 904L
1.4541	SUS321	X14CrNITi18-10	321	321531		Z6CNT18-10	2337	X6C/NITi1811	F3523	\$32100	12X18H10T	ATI 321
A542	SU5630	X5CrNICuNb174	630	17-10-1		Z7CNU15-05	0.00		10000	- Section 1	100010111001	UGIMA 454
A545	W. Landing	Z7CNU15.05	15-5PH			13.300.00				\$15500		ATI 15-5
A547		X1CrNiMoN20187	531254				2378			531254		Uranus B256
A550	SUS347	X6CrNiNb18-10	347	347517	58F	Z6CNNb18-10	2338	X6CrNiNb1811	F3552	534700	08X18H125	ATI 347
A552	SCS 21	GX7CrNINb18-9	3"	5.75.7		Z4CNNb19-10M		300111101011	1000	J92710	CONTOUR	111211
A568	SUS 631	X7GNIAI 177		316S111		Z9CAN 17-7	2388	Z8CNA17-07		517700	09X17H7IO	17-7PH
A571	SUS 316Ti	X6CrNiMoTi17-12-2	31611	320531	58J	Z6NDT17-12	2350	X6CrNiMoTi1712	F3535	Jirriu	10X17H13M2T	ATI 316Ti
A581	SCS 22	GX5CrNiMoNb18	31011	318C17	Su	Z4CNDNb18-12M	2330	AUCHHIOTHY 12	15555		IW(171112M21	Allololl
A583	202	X6CrNIMoNB18-12	318	303521		Z15CNS20-12		X15CrNISI2 12				
1.4585		GX7CtNIMoCuNb1818	310	30321		21501020-12		X6CrNiMoTi17 12		J94651		
						710/34515.04		AOCINEWOIII7 12				
1.4821		X20CrNiSi254				Z20CNS25-04				544635		
1.4823	CC517	GX40CrNISI274 X15CrNISI20-12	300	200524	cor	715/3/520 12			EOATA	J92605	20V20U1402	ATT SOC
1.4828	SCS17		309	309524	58C	Z15CNS20-12			F.8414	530900	20X20H14C2	ATI 309
4833	SU53095	X6CrNi2213	3095	309513		Z15CN24-13 Z12CN25-20	7261	Veramena	E221	J93400	AN TOTAL TO	ATT DATE:
1,4845	SUH310	X12CrNi25-21	3105	310524	ren		2361	X6CrNi2520	F.331	531008	20X23H18	ATT310S
1.4878	SUS321	X12C/NIT18-9	321	321520	588	Z6ONT18-12(B)	2337	X6GNIT11811	F3553	S32100		AO(315
1.4891		X5CrNiNb18-10	Ss30415				2372					
A893		X8CrNiNb11	S30815			Market and	2368			*****		
4948		X6CrNi1811	304H	304551		Z5CN18-09	2333			\$30480		
1.4980		X5NIC/TI2515	660				2570			S66286		Incoloy A 2
		X5NiCrN3525										
		X2CrNiMoN18134	S31753									

Группа материалов

	Aart	VDI 3323	1.456	сание мате Серый чуг				у <mark>ра / Термоо</mark> (ая/ Ферритн			180	HRc 10
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFROR	22	UNI	UNE/IHA	UNS	гост	Марки
0.6010	FC100	GG10	A48 20 B	Crunae 100	GJL-100	R10D	0100	G10	FG10		C410	
0.6015	FC150	GG15	A4825B	Сплав 150	GJL-150	R15D	0115	G15	FG15		C415	
0.6020	FC200	GG20	A4830B	Сплав 220	GJL-200	Ft 20 D	0120	G20	FG20	W06020	C420	
0.6025	FC250	GG25	A4840B	Crunae 260	GJL-250	R25D	0125	G25	FG25		C425	
0.6660		GGL-NiCr202	1050/700/7	Сплав F2	GJLA-XNiCr 20-2	L-NC 202	0523			F41002		Ni-Resist 2
1.4449	SUS317	XSCrNiMo17133	317	317516				X5CrNiMo1815		\$31700		ATI 317

	<	VDI 3323 16	1,000	сание матер Серый чугу			в / Структур ерлитная(<i>I</i>				HB 260	HRc 26
Mat'i No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	22	UNI	UNE/IHA	UNS	гост	Марки
0.6025	FC250	GG25	A4840B	Сплав 260	GJL-250	Rt 25 D	0125	G25	FG25		C425	
0.6030	FC300	GG30	A48 45 B	Crunas 300	GJL-300	Pt30D	0130	G30	FG30		C430	
0.6035	FC350	GG35	A48 50 B	Crunae 350	GJL-350	Rt 35 D	0135	G35	FG35		C435	
0.6040	FC400	GG40	A48 60 B	Сплав 400	GJL-400	Pt40D	0140	G40	FC40		C440	

	K	VDI 3323	174.000	сание мате жопрочны		Соста		ра / Термоо ритная	бработка		HB 160	HRc 3
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	гост	Марки
0.7033	FCD350-22L	GGG353	1.5	350/221.40	GJS-350-22-LT	FGS 370-17	0717-15	- 3				
0.7040	FCD400	GGG40	60-40-18	SNG 420-12	GJS-400-15	FCS 400-12	0717-02	GS 400-12	FG E38-17	F32800	B440	
0.7043	FCD 370	GGG40.3	60-40-18	SNG 370-17	GJS-400-18-LT	FGS 370-17	0717-12	GSO 42-17			8440	
0.6040	FC400	GG40	A48 60 B	Cruse 400	GJL-400	Pt40D	0140	G40	FC40		C440	

	K	VDI 3323		копрочнь		Состав		оа / Термос литная	бработка		250	HRc 25
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	roct	Марки
0.7050	FCD500	GGG50	80-55-06	SNG 500-7	GJS-500-7	FGS 500-7	0727-02	GS 500-7	FG E50-7	F33100	B450	
0.7060	FCD600	GGG60	80-55-06	SNG 600-3	GJ5-600-3	FGS 600-3	0732-03	GS 600-3	FG E60-2		B460	
0.7070	FCD700	GGG70	100-70-03	SNG 700-2	GJS-700-2	FGS 700-2	0737-01	GS 700-2	FG 570-2	F34800	B470	
0.7652	FCDA-NiMn 137	GGG NiMn 13-7	-	Сплав 56	GJSA-XNIMn 13-7	FGS Ni13 Mn7	0772					Nodumag
0.7660		GGG NiCr 20-2	A436 D2	Crunae S2	GJSA-XNICr 20-2	FGS NI20 Cr2	0776					Ni-Resist D-2

TOKAPHAN OEPABOTKA

ТОКЛЕНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА ОТРЕЗКА И ОБРАБОТКА РЕЦЫ NANOCUT

плустиня мкорцусу

СВЕРЛАН ПЛАСТИНЫ

206

	K	VDI 3323		сание мате Ковкий чуг	-	Состав		ра / Термос ритная	обработка		HB 130	HRc
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	гост	Марки
0.8135	FCMW330	GTS-35	32510	B340-12	GJMB350-10	MN 35-10	0815	GMN 35	GT\$35		K435-10	

	K	VDI 3323 20		сание мате Ковкий чуг		Состав		оа / Термос литная	бработка		HB 230	HRc 21
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	гост	Марки
0.8145	FCMW370	GTS-45	A220-40010	P440-7	GJMB450-6	MN 450	0852	GMN 45				
0.8155	FCMP490	GTS-55	50005	P510-4	GJMB-550-4	MP 50-5	0854	GMN 55			K460-3	
0.8165	FCMP590	GTS-65	70003	P570-3	GJMB-650-2	MN 650-3	0856	GMN 65				
0.8170	FCMP690	GTS-70	90001	P 690-2	GJM8-700-2	MN 700-2	0862	GMN 70			K470-2	

Группа материалов

	V	VDI 3323		ание мате поминиев сплав		Состав		ра / Термо ерждаема	обработка ия		60	HRc
Mat'l No.	UIS	DIN	AISI/ASTM/ SAE	BS	TEN	AFNOR	55	UNI	UNE/IHA	UNS	гост	Марки
3.0205		Al99	Al99								АДС	
3.0255	(A1050)	Al99.5	1000	L31		A59050C					АДО	
3,3315		AlMg1									AMr1	

١	Mat'l Jis	VDI 3323 22		ание мате поминиев сплав	3.0			ра / Термос мая, закал			100	HRc
Mat'i No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	55	UNI	UNE/IHA	UNS	roct	Марки
3.1325		AlCuMg1									Д1	
3.1655	A2011	AlCuSiPb										
3.2315		AlMgSi1									АД35	
3,4345		AlZnMgCuO,5	7050	L86		AZ4GU/9051		811-04				
3.4365	7075	AlZnMgCu1,5	7075	7075	4 R	7075	3 H	AlZn5.8MgCuCr			B95	

	V	VDI 3323 23		сание матер чево-литие			/Структур 2% Si, He		обработка јаемая		75	HRc
Mat'l No.	dis	DIN	AISI/ASTA/ SAE	ES	EN	AFNOR	22	UNI	UNE/IHA	UNS	roct	Мархи
3.2163		G-AISI9Cu3										
3.2382		GD-AlSi10Mg										
3.2383		G-AlSiOMg(Cu)	A360.2	LM9			4253				AK9	
3.2581		G-AISI12										
3.3561		G-AlMg5										
3.5101		G-MgZn4sE1Zr1	ZE41	MAG5								
3.5103		MgSE3Zn27r1	EZ33	MAG6		G-TR3Z2						
3,5812		G-MgAl8Zn1	AZ81	NMAG1								
3.5912		G-MgAl9Zn1	AZ91	MAG7								
			A356-72	2789		NFA32-201						
	A5052		356.1	LM25			4244				AK7	
		G-AlSi12	A413,2	LM6			4261					
	ADC12	G-AlSi12(Cu)	A413.1	LM20			4260				AK12	
	A6061	GD-AISI12	A413.0				4247					
	A7075	GD-AISI8Cu3	A380.1	LM24			4250					

208

		VDI 3323 24		сание мате мево-литие	риала евый сплав				обработка закаленная	4	90	HRc
Mar'l No.	IIS	DIN	ALST/ASTM/ SAE	RS	EN	AFNOR	25	UNI	UNE/IHA	UNS	LOCI	Марки
2,1871		G-AlCu4TIMg										
3.1754		G-AICU5NI1,5										
3.2371		G-AISI7Mg	42188								AK8	
3.2373	C4BS	G-AISI9MGWA	SC64D			A-57G	4251				AK9	
3.2381		G-AlSi10Mg									AK12	
3.5106		G-MgAg3SE2Zr1	QE22	mag12								
		G-ALMG5	GD-AISI12	LM5		A-SU12	4252					

Ĭ	V	VDI 3323 26		ание мате дные спла Латунь)	риала вы (Бронза,	Состав		ра / Термо ы, PB>1%	обработка		HB 110	HRc
Mat'l No.	JÍS	DIN	AIST/ASTM/ SAE	BS	EN	AFNOR	55	ÜNI	UNE/IHA	UNS	гост	Марки
2.0375		CuZn36Pb3				-, , - 1					ЛС63-3	
2.1090		G-CuSn75pb	C93200			U-E7ZSpb4						
2.1096		G-CuSn5ZnPb	c83600	LG2								
2.1098		G-CuSn2Znpb	C83600			DAT						
2.1182		G-CuPb15Sn	C23000	LB1	4 Ki	U-pb15E8	1 H					

		VDI 3323 27		сание мате едные спла Латунь)	риала вы (Бронза,			ра / Термоо SnZn (Лату	обработка /нь)		HB 90	HRc
Mat'l No.	JIS	DIN	AISVASTM/ SAE	BS	EW	AFNOX	22	UNI	UNE/IHA	UNS	roct	Марки
2.0240	C2300	CuZn15									Л85	
2.0321		CuZn37	C27200	cz108		CuZn36,CuZn37		C2700			Л63	
2.0590		G-CuZn40Fe										
2.0592		G-CuZn35Al1	C86500	U-Z36N3		HTB1						
2,0596		G-CuZn34AI2	C86200	HTB1		U-Z36N3					ЛЦ23А6Ж3Мц2	
2.1293		CuCrZr	C18200	CC102		U-Cr0-8Zr						

	V	VDI 3323 28		сание матер дные спла Латунь)	риала вы (Бронза,				обработка питическая	медь	100	HRc
Mat'l No.	JIS	DIN	AISVASTM/ SAE	BS	EN	AFNOR	5.5	UNI	UNE/IHA	UNS	FOCT	Марки
2.0060		E-Cu57										
2.0966		CuAl10Ni5Fe4	C63000	Ca104		U-A10N					БрАЖН10 -4-4	
2.0975		G-CuAl10Ni	B-148-52									
2.1050		G-CuSn10	c90700	CT1								
2.1052		G-CuSn12	C90800	pb2		UE12P						
2.1292		G-CuCr35	C81500	CC1-FF								

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА

ТОКАРНАЯ ОБРАБОТКА АНТИВИБ, ОПРАВКИ

TOKAPHAJI OGPAĐOTKA PEBLIBI NANOCUT

ОТРЕЗКА И ОБРАБОТКА

пластины и корпуса

СВЕРЛЕНИЕ

210

Техническая информация

	5	VDI 3323 31		сание мате ючные суп	ериала персплавы	Состав		ра / Термог эжженная			HB 200	HRc 15
Mat'l No.	JIS	DIN	AISI/ASTIM/ SAE	BS	EN	AFROR	55	UNI	UNE/IHA	UNS	roct	Марки
1.4558	NCF800TB	X2NiCrAIT3220	N08800	NA15								
1.4562		X1NiCrMoCu32287	N08031									
1.4563		X1NiCrMoCuN31274	N08028			Z1NCDU31-27-03	2584				обхн28мДТ	
1.4864	SUH330	X12NiCrSl36-16	330	NA17		Z12NCS37-18				N08330		
1.4865	SCH15	GX40NiCrSi38-18		330C40				XG50NiCr3919		J94605		
1.4958		XSNKFAITI3120										
		VDI 3323	Опи	сание мате	риала	Состав	/ Структу	ра / Термо	обработка		НВ	HRc
	3	32	Жаропр	очные суп	ерсплавы		Fe, Co	старенная	1		280	30
Mat'l No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	ss	UNI	UNE/INA	UNS	roct	Марки
1 <i>A</i> 977		X40CoCrNi2020				Z42CNKDWNb						
Mat'i No.	JIS	33 DIN	AISVASTIN/ SAE	в в	ерсплавы	AFNOR	мли Со,	Отожжен	UNE/IHA	UNS	250 roct	25 Марки
2.4360		NICu30Fe		NA13		NU30				N04400		Monel400
2.4603		NiCr 30 FeMo	5390A			NC22FeD						Hastelloy G-3
2,4610		NIMo16cR16TI								N26455		HastelloyC-
24630		NIC/2011		HR5,203-4		NC20T				N06075		Nimonic75
24631	NCF80A	NiCr20TiAl		Hr40		NC20TA				N07080	хн77110Р	Nimonic 80
24642	NCF 690	NiC29Fe				Nnc30Fe				N06690		Inconel 690
2.4856		NiCr22Mo9Nb		NA21		NC22FeDNb				N06625		Inconel 625
24858		NiCr21Mo		NA16		NC21FeDU				N08825	XH38BT	Incoloy 825
	2	VDI 3323	Опи	сание мате	риала	Состав	/ Структу	ра / Термо	обработка		HB	HRc
_	3	34	Жаропр	очные суп	ерсплавы	N	і или Со,	Состарен	ная		350	38
Mat'l No.	JIS	DIM	AISI/ASTM/ SAE	15	EN	AFNOR	55	ÜNİ	UNE/INA	UNS	roct	Марки
2.4375		NICu30AI	4676	NA18		NU30AT				N05500		Monell/500
2.4662		NiFe35Cr14MoTl	5660			ZSNCDT42				N09901		Incoloy 901
2.4668		NiCr19Fe19NbMo	5383	HR8		NC19eNB				N07718		Inconel 718
2.4670		S-NiG13A16MoNb	5391	Mar-46		NC12AD						Nimo/Ivrae 7
2.4694		NiG-16fE7TiAl								N07751		Inconel 751
24955		NIFe25Cr20NbTI										
24964		CoCr20W15Ni	5772			KC20WN						Haynes 25
		CoCr22W14Ni	AMS 5772			KC22WN						

	5	VDI 3323 35		ание мате очные суп	<mark>риала</mark> ерсплавы	Состав		р <mark>а / Термо</mark> Со, Литы	обработка		HB 320	HRc 34
Mat'l No.	JIS	DIN	ALSVASTAV SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	roct	Марки
2.4669		NiCr15Fe7TiAl				NC15TNbA				N07750		Inconel X750
2.4685		G-NiMo28								N10665		Hastelloy B
2.4810		G-NiMo30										Hastelloy C
2.4973		NICr19Co11MoTI	AMS 5399			NC19KDT						
3.7115		TIAISSn2								R54520	BT5-1	ATT Cruas 6

	5	VDI 3323 37	Опи	сание матер Титановые сплавы					обработка каленная		HB 1050 Rm	HRc
Mat'l No.	JIS	DIN	AISVASTM/ SAE	BS	EN	AFNOR	22	UNI	UNE/IHA	UNS	гост	Марки
3.7124		TICu2		2TA21-24					- Y			
3,7145		TIAl6Sn2Zr4Mo2SI	R54620							R54620		
3,7165		TIAI6V4	AMS R56400	TA10-13		T-A6V					BT6	
3,7185		TiAl4Mo4Sn2		TA45-51								
3.7195		TIAI3V2.5								R56320		AT13-2.5
		TIAI4Mo4Sn4Si0.5										
		TIAISSn2.5	AMS R54520	TA14/17		T-ASE						
		TI6AMVELI	AMS R56401	TA11								

TOKAPHAII OSPASOTIKA

Техническая информация

Группа материалов

	H	VDI 3323 38	75	сание мате каленная с		Состав		ура / Термооі аленная	бработка		HB 550	HRc 55
Matfl No.	JIS	DIN	AISI/ASTIN/ SAE	BS	EN	AFROR	22	UNI	UNE/IHA	UNS	roct	Марки
1.1231	570C-CSP	Ck67	1070	060 A 67	C67S	XC68	1770	C70	F.5103		70	
1.1248	C75	Ck75	1078, 1080	060 A 78	C75S	XC75	1774	C75	F5107		75	
1.1274	SUP4	Ck 101	1095	060 A 96	C100S	XC100	1870	C100	F.5117			
1.1545	SK3	C105W1	W1	BW2	C105U	Y1 105	1880	C100KU	F.5118		Y10A	
1.2762		75CrMoNiW67	10.00	19-11		· ·	-40	-				
1.3401	SCMnH1	GX120Mn12	A128(A)			Z120M12	2183	GX120Mn12	F.8251		110713/1	
1.4021	SUS 420 J1	X20 Cr13	420	420537	X 20 Cr 13	Z20C13	2303	X20Cr13	F.5261		20X13	ATI 420
1.4109	SUS 440 A	X 65 CrMo 14	440 A	+	X70 CrMo 15	Z70D14	14	-				ATI 440A
1.4112	SUS 440 B	X90 CrMoV 18	440 B	409 \$ 19	X 90 CrMoV 18	Z2CND 1805	2327	XC/TI12				
1.4125	SUS 440 C	X 105 CrMo 17	440 C		X 105 CrMo 17	Z100 CD 17		X 105 CrMo 17			95X18	ATI 440C
1.6746		32NiCrMo14-5		832M31	32nlcRmO145	35NCD14	-					
1.7176	SUP9(A)	55G/3	5155	527A60	48	55C3	2253	55C/3				
1.7225	SOM 440 (H)	42CrtMo4	4140	708 M 40	42 CrMo4	42 CD 4	2244	42 CrMo 4	F.1252		38XM	

	5AE BS EN AFRON SS UNI UNE/HA UNE 620 GX260NICr42 A532 IB Cruae 2 A GJN-HV520 FB NI4 Cr2 BC 0512 - F45001 625 GX330NICr42 A532 IA Cruae 2 B GJN-HV550 FB NI4 Cr2 HC 0513 - F45000 630 GX300 GNISI 95 2 A532 ID Cruae 2 C GJN-HV600 FB G9 NI5 0457 - F45003												
Mat1 No.	JIS	DIN	Control Control Control	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	гост	Марки	
0.9620		GX260NICr42	A532 IB	Crunae 2 A	GJN-HV520	FBNI4 C/2 BC	0512			F45001		NI-Твердый2	
0.9625		GX330NiCr42	A532 IA	Сплав 2 В	GJN+N550	FBNI4Cr2HC	0513	-		F45000		Ni-Твердый1	
0.9630		GX300 CrNISI 9 5 2	A532 ID	Cruas 2 C	GJNHN600	FBC9Ni5	0457			F45003		Ni-Твердый 4	
0.9640		GX300CrMoNi1521		*	*		*	4		F45005			
0.9650		GX260C/27	114	Crystas 3 D			0466						
0.9655		GX300CrNMo271	*	Сплав 3 Е			4	1+			20C 25N20S2		
1.4841	SUH310	X15CrNiSi25-20	310	314531	X 15 CrNiSi 25 20	Z15CNS25-20	+	-		531400		Cronifer 2520	

	-	VDI 3323 41	1000	ание мате эленный ч		Состав		ра / Термо пленная	обработка		HB 550	HRc 55
Mat'i No.	JIS	DIN	AISI/ASTM/ SAE	BS	EN	AFNOR	SS	UNI	UNE/IHA	UNS	FOCT	Марки
0.9635		GX300 CrMo 153			¥		(+)				_	
0.9645		GX260 C/MoN(2021		7	*	-				F45007		

СВЕРЛЕНИЕ ТЕ

пластины и корпуса

212

Сравнительная таблица - Стружколомы для токарной об-ки

Негативные сменные пластины

Материал	YG	Sandvik	Iscar	Kenna metal	Seco	Walter	Mitsu bishi	Kyocera	Tungaloy	Sumi tomo	Taegutec	Korloy	Duracarb
	UF	PF	F3P NF	FF FN	F1 MF2	FP5	FHLP	GP PP	TF	FL SP	FG FA	VF HU	41
	UL		PP NF			FP5	FY SY	CQVF	TSF	LU	FC FT	НС	43
	UM		TF	MN	МЗ	МРЗ	MP	HS	тм	GU UX	MC PC	VM GM	46
СТАЛЬ	UG	PM	GN M3P	MN	M3 MR3	MP5	мр ма	PS	тм	UG	MTPC	GR HR	45
	UC	PR	NR	MP RP	MR4	RP5	Standard	Standard	TH	UZ	MG-	B25	53
	UR	PR	NR R3P	UN RN MG	MR3 MR6	RP7	RP MH RK	PTPH	THS	MEMU	RT	GR	
	MF	MF	SF	FF	MF1	NF4	LM	MQ	SF HRF	SU	EA ML	НА	
НЕРЖА-	мм	мм	мзм	MP	MF3 MF4	NM4	мм	MS	SM	GU	EM	GS	42
ВЕЮЩАЯ	MG	MM	TF, VL, M3M	MP, UP	MF4	MM5	MS, GM	MU, MS	SS	EX, UP	ML	HS, MM	42
	MR	MR	F3M	RF	M5	NR4	RM	MS MU	SH	EM	ET RT	RM	
	UC	PR	NR	MP RP	MR4	MK5	Standard	Standard	АІІ Круглая	UZ	MG-	B25	53
чугун	UR	PR	NR R3P	UN RN MG-	MR3 MR6	RK5 RK7	RP MH RK	PTPH	СН	MEMU	RT	GR	
	"MA			RP	MR7	MA	MG-	С	СН	GZ	MA		53
	SF	SF, XF	SF, PF, PP	FS, LF, UP	M1, MF1	NF4, NFT	FJ, LS	MQ, SK, TK	SF, HMM	EF, UP, EG	EA, ML	VP1, VP2	41
СУПЕР- СПЛАВЫ	SM	SM, XM	TF	MS, GP	MF4, MR3	NMS, NMT	MS	MS	HRF	EX	EM	VP3	42
	SR	XMR	MR	RP	MR4	NRS, NRT	RS, GJ	MU	HRM	MU	ET	VP4	45

Позитивные сменные пластины

Материал	YG	Sandvik	Iscar	Kenna metal	Seco	Walter	Mltsu bishi	Kyocera	Tungaloy	Sumi tomo	Taegutec	Korloy	Duracarb
	UF	PF	PF	LF UF	MF2	PF2 FP4	FM LM LP	GQ PP	01 PSF	FP	FG	HFP	41
СТАЛЬ	UG	PM		MF	MF3	MP4 FP6	MP Standard MM MV	HQ	PS PM	MU	МТ	C25	51
НЕРЖА- ВЕЮЩАЯ СТАЛЬ	UF	PF	PF	LF	MF2	MM4 PS5	FM LM LP	GQ PP	PM	FP	FG	HFP	41
чугун	ŲĠ	PM		UF	MF3	MK4 RK4	MP Standard MM MV	HQ	СМ	MU	МТ	C25	51
АЛЮМИ- НИЙ	AL		AS	MF	AL	PF2 PM2	AZ	CF CK	AL	AG	FL	AK	AU

Сравнительная таблица - Токарные сплавы

ISO	YG	Sandvik	Iscar	Kenna metal	Seco	Walter	Mitsu bishi	Kyocera	Tungaloy	Sumi tomo	Taegutec	Korloy	Duracarb
P05	YG1001	GC4205 GC4305		KCPK05	TP0500 TP0501	WPP05S	UE6105						
P10	YG3010		IC8005 IC428	KCP05 KC9105 KCP05B KCP10 KCP10B KC9110		WPP01 WPP10S	UE6110	CA5505 CA510	T9105 T9205	AC810P	TT8115	NC3010	DC9015
P15	YG3015	GC4315 GC4215	IC8150 IC9015	КСР10	TP1501 TP1500		MC6015	CA5515 CA515	T9115 T9215	AC8015P	TT8115	NC3215	DC9015
P20	YG3020 (YG801)	GC4325 GC4225	IC8250 IC9015	KCP25 KC9125 KCP25B	TP2501 TP2500	WPP20S	MC6025 UE6020	CA5525 CA525	T9125 T9225	AC8025P AC820P	TT8125	NC3220 NC3225 NC3120	DC9025
P30	YG3030	GC4335 GC4235	IC8350 IC8025	KCP30 KCP30B KCP40B KC9140	TP3501 TP3500	WPP30S	MC6035 UE6035 VP15TF	CA5535 CA530 CR9025	T9135 T9235	AC8035P AC830P AC630M	TT5100 TT8135	NC3030 NC5330 PC3545	DC9025 DC8035
M10	YG211	GC2015 GC1115	IC807 IC6015 IC8150	KCU10 KCM15 KCM15B KC5010	CP200 TS2000	WSM10S	MC7015 VP10RT US7020	CA6515 PR930	T6120 AH110 AH8005 AH8015	AC610M	TT9215 TT5080	PC8105 PC8110	
M20	YG3030	GC2025 GC1125	IC3028 IC8250	KCM25 KCM25B	TM2000 TS2500	WMP20S	MC7205 VP15TF VP20MF UP20M	CA6525	T6130 AH120 AH725 SH725 GH330	AC6030M AC610M AC520U	ТТ9225	PC8115 NC9115 PC5300	
M30	YG213	GC2220	IC808 IC6025 IC8350	KCU25 KC5025	CP500	WSM20S WSM21	US735 MP7035 VP15RT VP20RT	PR1025 PR1125 PR1425 PR1535	AH630 SH730 GH730	AC6030M AC630M AC830P	TT9235 TT9020 TT9080	NC9125 NC5330 PC9030	DC8035
M40	YG214	GC2035		KCM35 KCM35B	CP600 TM4000 TP40	WSM30S	US735 MP7035		AH645	AC6040M AC530U	TT9235 TT8020 TT8080	NC9135 PC5400	
K10	YG1010	GC3205 GC3210	IC5005 IC5010	KCK05	TK1001 TK1000	WKK10S	MC5005 MC5015 UC5105 UC5115	CA4505 CA4010	T5105 T515	AC405K	TT7005	NC6205	DC820 DC610
K15	YG1001 (YG3010)	GC3215	IC5100 IC8150	KCK15 KCK20	TK2001 TK2000	WKK20S WKP30S	UE6110 VP15TF	CA4515 CA4115 CA4120	T5125	AC415K AC420K	ТТ6300 ТТ7015 ТТ7025 ТТ7310	NC6210 NC6215	
S10	YG401 (YG211)	GC1105 S05F H13A	IC807 IC808	K313 K68 KCS10 KCU10 KC5010	TS2000 TS2050 TS2500 CP200	WSM10S WS10	VP05RT MP9005 VP10RT MP9015	CA6515 PR1305 PR1310	AH110 AH120 AH8005 AH8015 AH905 SH730	AC510U	TT9215 TT5080	PC8105 PC8110 PC8115	DC820 DC610
S20	YG401 (YG213)	GC1115	IC806	KCU25 KC5025	890 883	WSM20S WSM21	VP15TF VP20RT	CA6525 PR1125 PR1325 PR1535	AH725	AC520U	ТТ9225 ТТ9080	NC9125 NC9135 PC5300	
S30	YG214	GC1125			CP500 CP600	WSM30S		PR1125 PR1535			TT9235 TT8020 TT8080	PC5400	

Сравнительная таблица - Сплавы для фрезерования

ISO	YG-1	Sandvik	Iscar	Kennametal	Seco	Walter	Mitsubishi	Kyocera	Tungaloy	Sumitomo	Taegutec	Korloy
P20	YG712	GC4220 GC4230	IC950	KCPM20 KC522M	MP2500 MP3000 T250M	WKP25 WKP25S	MP6120 VP15TF	PR720 PR1025 PR1225	T3130 AH330 GH330	ACP200	TT7080 TT7030	NC5330 PC3500 PC3600
P30	YG713 YG613 YG622 YG602	GC1025 GC1030	IC808 IC907 IC908	KC522M KC635M KC927M	F25M F30M	WAM30 WKP35	MP6120 VP15TF MP6130 F7030	PR630 PR830 PR1230	AH725 AH730 AH120 GH130	ACP300 ACZ350	TT9080 TT9030	NC5340 NCM325 PC5300
M20	YG613 YG602	GC1125 GC1025 GC1030	IC808 IC907 IC908	KC522M KC635M	MP2500 F25M F30M	WQM35 WSM35S	VP15TF MP7130 VP20RT	PR730 PR1025 PR1225	T3030 AH725 AH120 AH4035	ACP200 ACM100 ACM200	ТТ9030 ТТ9080	NC5330 PC5300 PC9530 NC5340 NCM325
K10	YG5020 YG501	GC3330	IC5100	KC915M	MK1500 MP1500	WAK15	MP8010 MC5020			ACK100	TT7515	PC8110 PC6510
K20	YG622	GC3040	IC810 IC910	KCK15 KC520M	MK2050	WKK25	VP15TF	PR1210 PR1510	T1115 AH110	ACK200 ACK300	TT6080	NC5330 PC5300 NC5340
S20	YG613 YG602	S30T GC1025 S40T	IC328 IC907	KC510M KC635M	MS2050 MS2500	WSM35S WSP45S	MP9120 VP15TF	PR905 PR1025	AH725	AC520U	TT9030 TT8020	PC5300 PC5400