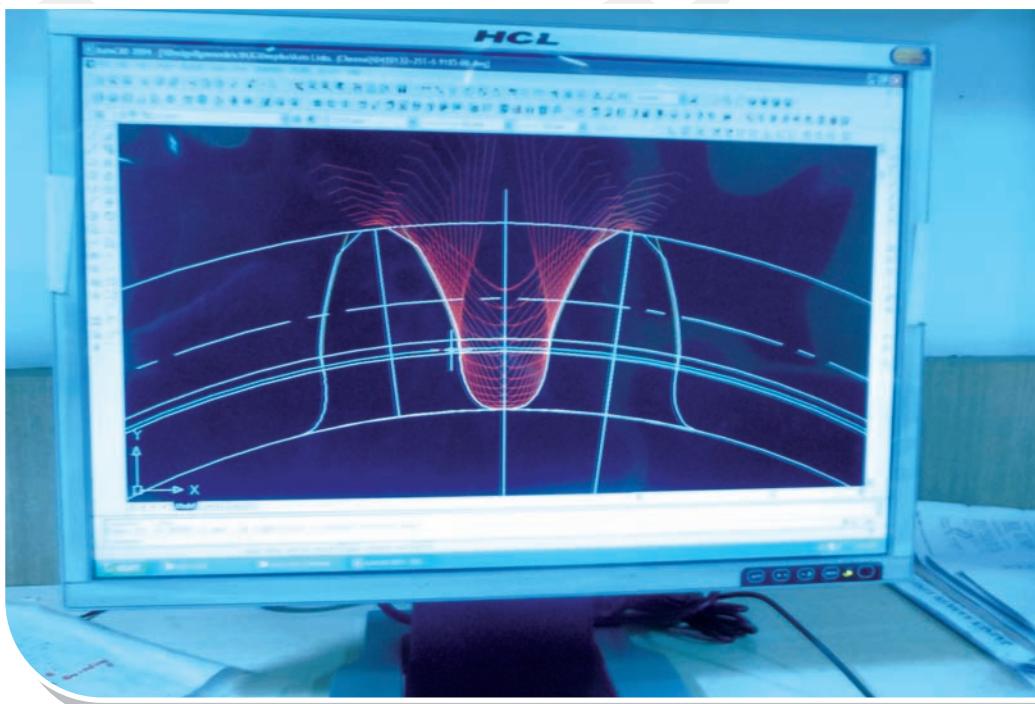


AAMCOL

LEADERS IN HOPS & SPLINE GAUGES



JAINEX AAMCOL LTD.

PUTTING THE WORLD IN FORWARD GEAR

CENTRE FOR ENGINEERING EXCELLENCE

INDEX

1. Products

a) Hobs

- 1) Gear & Involute Spline Hob
- 2) Straight Sided Spline Hob
- 3) Sprocket Hob
- 4) Serration Hob
- 5) Ratchet Hob
- 6) Timimg Pulley Hob
- 7) Worm Wheel Hob

b) Inspection Tools & Precision Accessories

- 1) Spline Plug Gauges
- 2) Spline Ring Gauges
- 3) Spline Mandrels
- 4) Index Plates

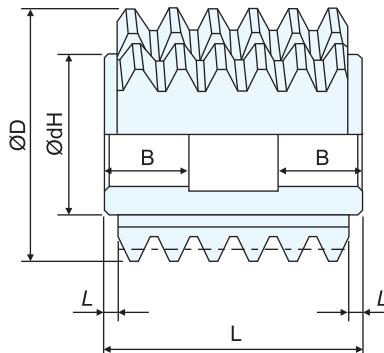
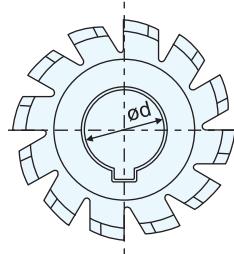
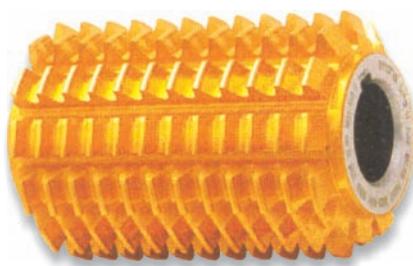
c) Cutters

- 1) Form Relieved Milling Cutters
- 2) Hi-Bite Mills
- 3) Special Tools

2. Services

- a) Heat Treatment
- b) Re-Sharpening of Hobs
- c) Re-Sharpening of Shaving Cutters

3. Guidance

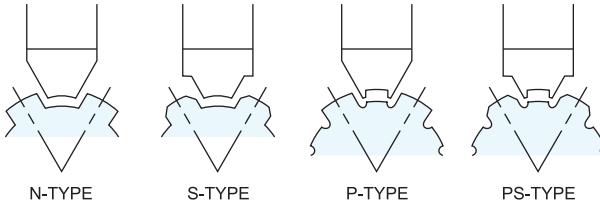



- a) Hobs Nomenclature
- b) Hobbing Principle
- c) Basic Rack Tooth Profile
- d) Allowances / finishing stock
- e) Addendum Modification Co-efficient & Amount of Tip Chamfer
- f) Timing Belt Profile
- g) Cutting conditions / Tool wear
- h) Effect of sharpening errors

4. Ordering Details

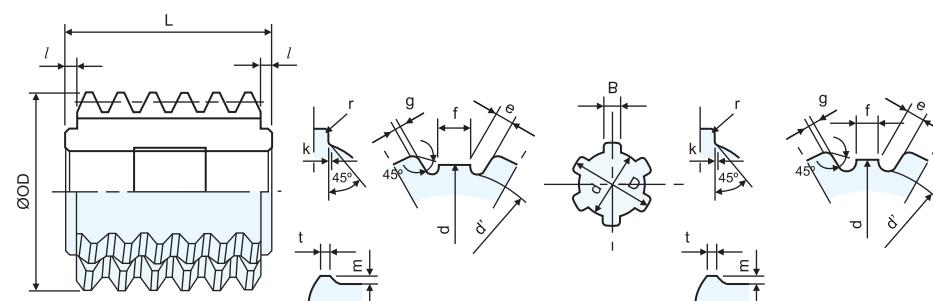
- a) Hobs
- b) Spline Gauges

GEAR AND INVOLUTE SPINE HOB

Sizes as per DIN-8002B


Module	Outside dia (ø D)	Length (L)	Bore diameter (ø d)	Hub length	Gashes
1.0	50	31	22 (3/4")	3	14
1.25					
1.5	56	38	22 (3/4")	3	12
1.75					
2.0	63	46	27 (1")	3	12
2.25					
2.5	70	56	27 (1")	3	12
2.75					
3.0					
3.25	89	69	32 (1 1/4")	3	12
3.5					
3.75					
4.0	90	78	32 (1 1/4")	4	12
4.5	90	78	32 (1 1/4")	4	10
5.0					
5.5	100	88	32 (1 1/4")	4	10
6.0					
6.5	110	108	32 (1 1/4")	4	10
7					
8					
9	125	138	40 (1 1/2")	4	10
10	140	170	40 (1 1/2")	5	10
11	160	180	50 (2")	5	9
12	170	195	50 (2")	5	9
13	180	210	50 (2")	5	9
14	190	225	50 (2")	5	9
15	200	235	60 (2 1/4")	5	9
16	210	248	60 (2 1/4")	5	9
18	230	270	60 (2 1/4")	5	9
20	250	296	60 (2 1/4")	5	9

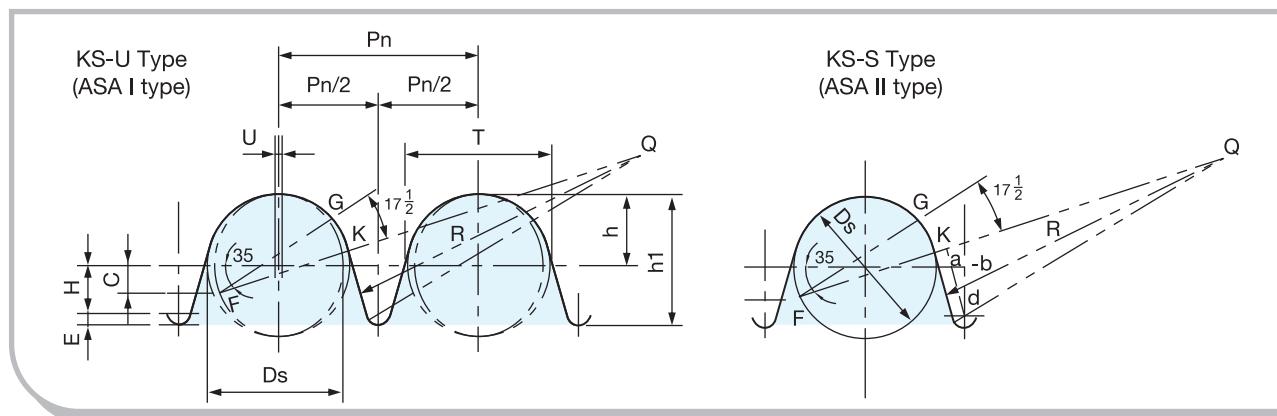
BROTECH


STRAIGHT SIDED SPLINE HOB

AAMCOL

Title of Spline of	Specification of HOB						I Typr				II Typr			
	Outer Diameter (OD)	Full Length (L)	Inner Diameter	Number of Splines N	Minor Diameter d	Major Diameter D	Width B	Chamfering g	Number of Splines N	Minor Diameter d	Major Diameter D	Width B	Chamfering g	
11	60	60	19.05											
13														
16														
18														
21														
23					23	26	6	0.3		23	28	6	0.3	
26					26	30	6			26	32	6		
28					28	32	7			28	34	7		
32					32	36	8			32	38	8		
36					36	40	8			36	42	8		
42					42	46	10			42	48	10		
46	95	95	32 (31.75)	6	46	50	12	0.4		46	54	11	0.4	
52					52	58	14			52	60	14		
56					56	62	14			56	65	14		
62					62	68	16			62	72	16		
72					72	78	18			72	82	18		
82					82	88	20			82	92	20		
92	145	190	40 (38.1)	8	92	98	22	0.5		92	102	22	0.5	
32					32	36	6			32	38	6		
36					36	40	7			36	42	7		
42					42	46	8			42	48	8		
46					46	50	9			46	54	9		
52					52	58	10			52	60	10		
56					56	62	10			56	65	10		
62					62	68	12			62	72	12		
72				10	72	78	12			72	82	12		
82					82	88	12			82	92	12		
92					92	98	14			92	102	14		
102					102	108	16			102	112	16		
112					112	120	18			112	125	18		

The values of Tip width (f), undercut width (e) and lug diameter (d') are decided as per DIN-5462, DIN-5463 or DIN-5464.

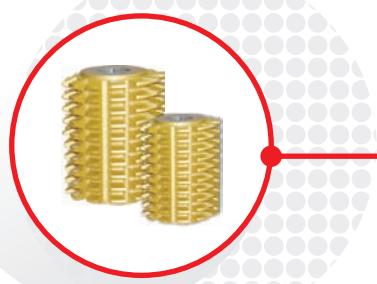

SPROCKET HOB

(mm)

KS, ASA I & II	C P	R D	HOB Dimensions			
			Outer Diameter (ϕ D)	Full Length (L)	Inner Diameter (ϕ d)	
			A (meter)	B (inch)		
RS25	6.35 (1/4")	3.30	60	60		
35	9.525 (3/8")	5.08	65	65		
35	9.525 (3/8")	6.35	65	65		
40	12.7 (1/2")	7.77	75	75		
40	12.7 (1/2")	7.95	75	75		
40	12.7 (1/2")	8.5	75	75		
50	15.875 (5/8")	10.16	85	90		
60	19.05 (3/4")	11.907	90	105		
80	25.4 (1")	15.875	110	125		
100	31.75 (1 1/4")	19.05	120	140		
120	38.1 (1 1/2")	22.225	130	170		
140	44.45 (1 1/2")	25.4	160	190		
160	50.8 (2")	28.575	170	210		
180	57.15 (2 1/2")	35.72	190	240		
200	63.5 (2 1/2")	39.688	210	260		
240	76.2 (3")	47.625	240	3100	50	50.8

CHAIN AND HOB TOOTH PROFILE (NORMAL ANGLE)

" KS-U Type

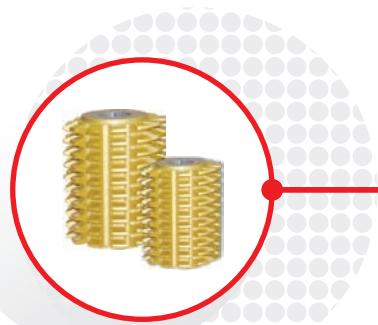
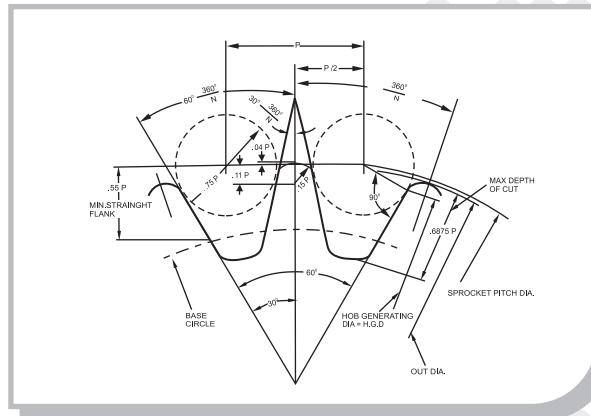

Pn = Normal pitch of hob = $1.011 \times$ Chain Pitch

Ds = Minimum diameter of basic coverage of tooth bottom
= $1.005 \times$ Roller + 0.08

$U = 0.07 \times (\text{Chain Pitch} - \text{Roller diameter}) + 0.051$

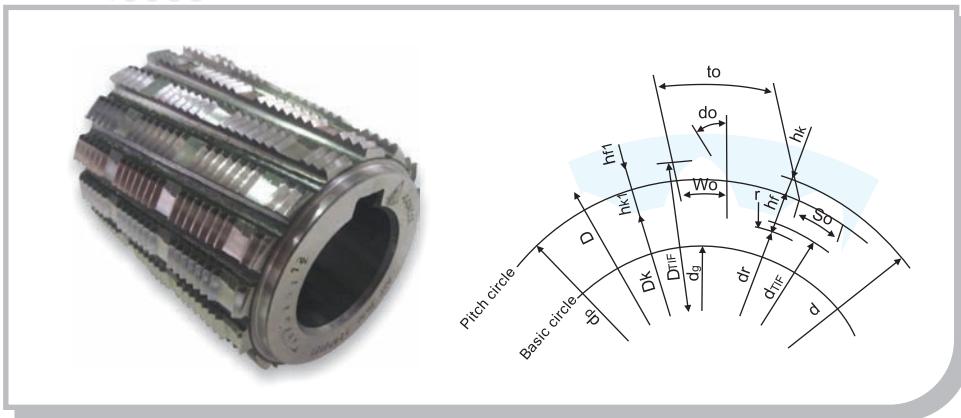
" KS-S Type

$U = 0$

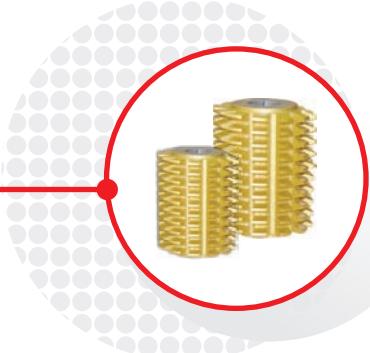


BROTECH

SILENT CHAIN SPROCKET HOB

AAMCOL


For tooth profile; ASA B29.2-1950 and UDC NO.621.855

Chain Pitch	Hob Number	Standard Number of Teeth	Range of Tooth Profile of Hob
SC3 = .375"	1	20	17-23
SC4 = .500"	2	28	24-32
SC5 = .625"	3	38	33-43
SC6 = .750"	4	51	44-58
SC8 = 1.000"	5	69	59-79
SC10 = 1.250"	6	95	80-110
SC12 = 1.500"	7	100	111-150


SERRATION HOB

Following is standard tooth profile of KS-B-2007 Involute Serration.

Order specifications for Involute Serration Hob are the same as that of Involute Spline Hob. For overall dimensions, please refer to Involute Spline Hob described in page 2. Basic formulae of each part are as follows:

Item		Symbol	Calculation Formula of Serration Part
Module	m		6 kinds; 0.5, 0.75, 1.0, 1.5, 2.0, 2.5
Teeth	z		10~60
Pressure Angle	α_0		Pressure Angle on pitch circle $\alpha_0 = 45^\circ$
Tooth Height Shift	h_t χ		$0.8m$ $0.1m$
Major Diameter	d		$d=(z+0.8+2\chi)m=(z+1)m$
Pitch	t_0		$t_0 = \pi \cdot m$
Pitch Diameter (Pitch Circle Diameter)	d_p		$d_p = z \cdot m$
Inner Diameter Serration	Major Diameter Minor Diameter Limit Diameter of Involute Addendum dedendum Width of Arc of Groove on PCD	D D_k D_{TIF} h_{k1} h_{f1} W_0	$D=(z+1.4)m = d + 0.4 m$ $D_k = (z-0.6)m = d - 1.6m$ $D_{TIF} = (Z+1.1)m$ $h_{k1}=(0.4-\chi)m=0.3m$ $h_{f1}=(0.6-\chi)m=0.7m$ $W_0=(\frac{\pi}{2}+2\chi \tan \alpha_0)m = (0.5\pi+0.2)m$
Outer Diameter Serration	Major Diameter Minor Diameter Limit Diameter of Involute Addendum dedendum Thickness of Arc of Tooth on PCD	d d_r d_{TIF} h_k h_r S_0	$d=(z+0.8+2\chi)m = (z+1)m$ $d_r=(z-1)m=d-2m$ $d_{TIF} = (Z-0.7)m$ $h_k=(0.4+\chi)m=0.5m$ $h_r=(0.6-\chi)m=0.5m$ $S_0=(\frac{\pi}{2}+2\chi \tan \alpha_0)m = (0.5\pi+0.2)m$

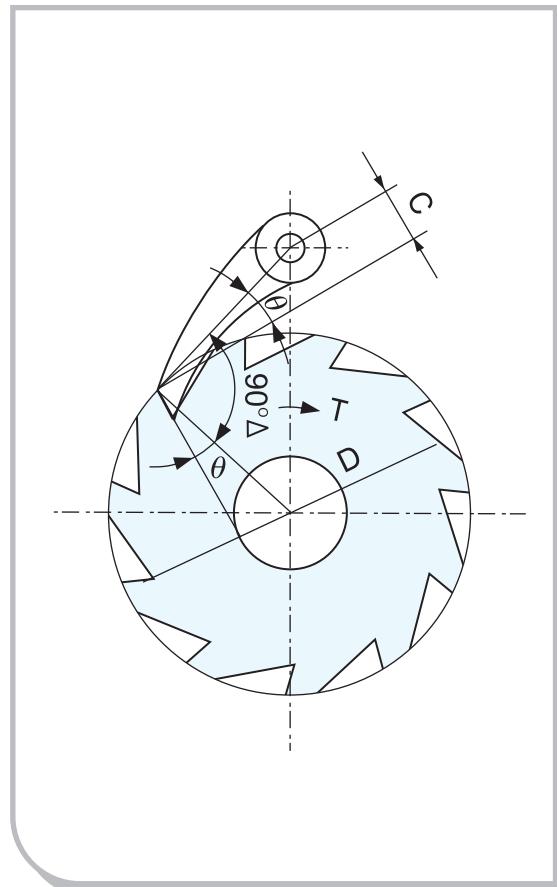
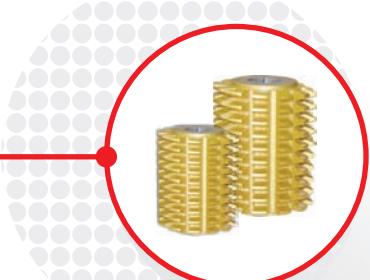
RATCHET HOB

The importance of designing ratchet should be recognized considering its indispensable functions.

Following are to be considered in designing ratchet.

- " Force impacted on the sustaining point of the pawl must be minimal.
- " Angle (θ) of contacting side of pawl when it stops must be larger than fractional angle.

Under normal dry ambience $\theta = 12-20^\circ$

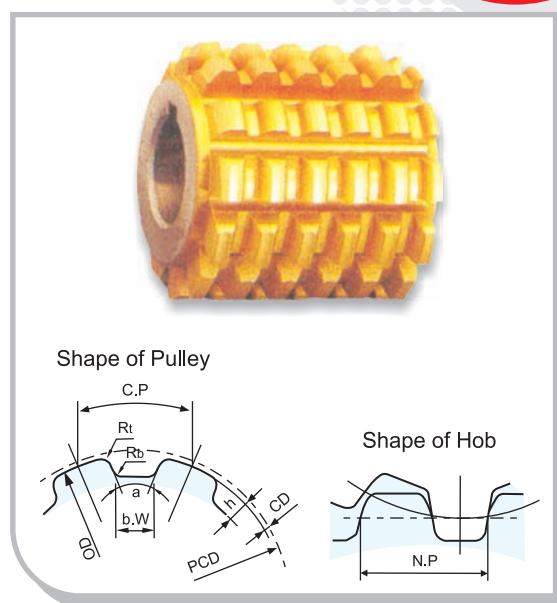


Under lubrication $\theta = 10-15^\circ$

Things to accompany with Order

When ordering RATCHET HOB, please provide following data

- " Detailed Drawing of Ratchet Profile
- " Overall dimensions of Hob (Outer Diameter x Inner Diameter x Length)
- " Specification of Hob

-Number of Threads and Blades, etc.


TIMING PULLEY HOB**❖ Order Specification**

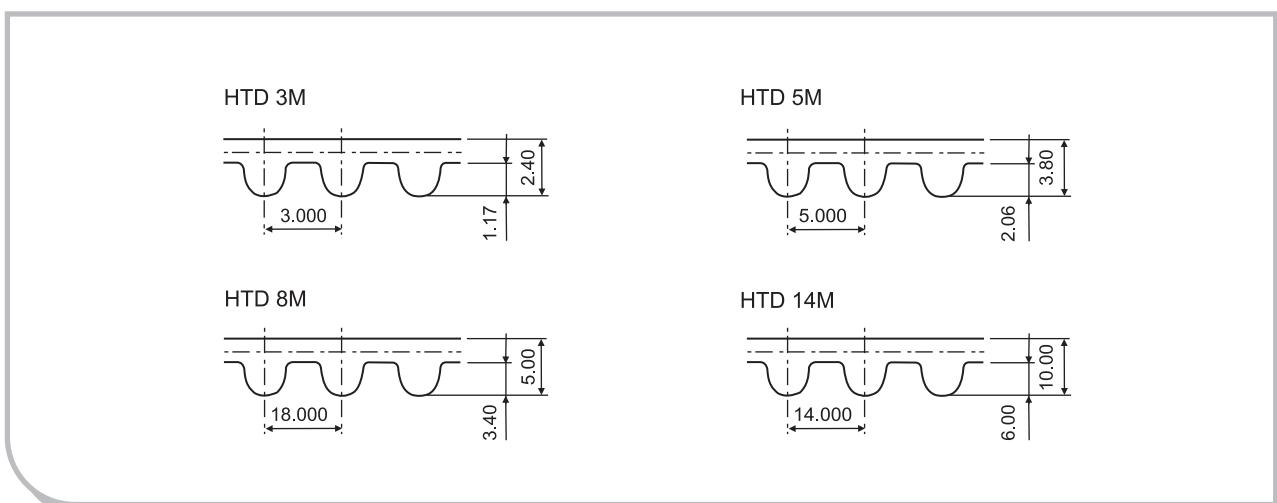

Timing belt varies in its tooth profile depending upon manufacturer. As such tooth profile data is required along with order specification.

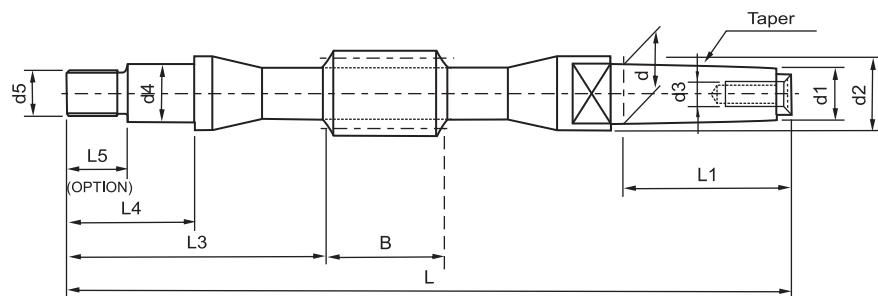
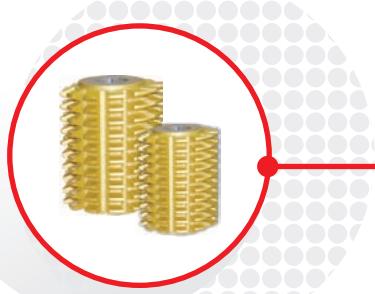
- " Belt Specification (Model Type and Pitch)
- " Belt Manufacturer " Pulley Teeth
- " Detailed Descriptions and Drawing of Pulley Teeth
- " Size of Exterior Look of Hob ordered (outer diameter x inner diameter x full length, etc.)
- " There is no limit in designing pulley hob beyond 24T for using it for common purpose in the industry in general.

❖ Common Dimension Table

Hob Number	Number of Pulley Teeth	Standard Tooth for Design
1	More than 40	40
2	25-39	25
3	17-24	17
4	12-16	12
5	9-11	9

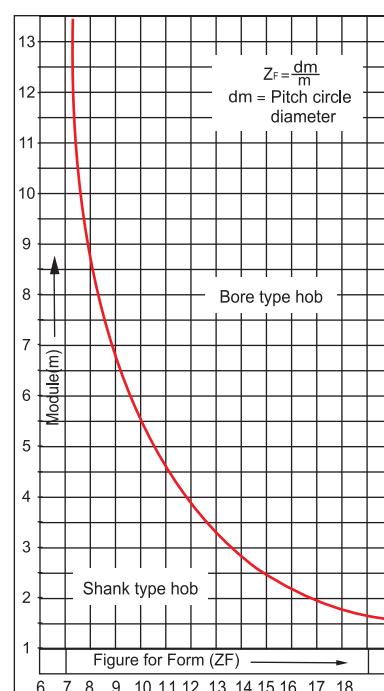
BROTECH

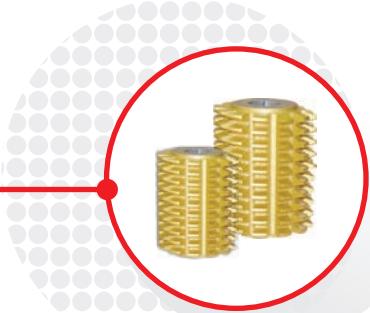
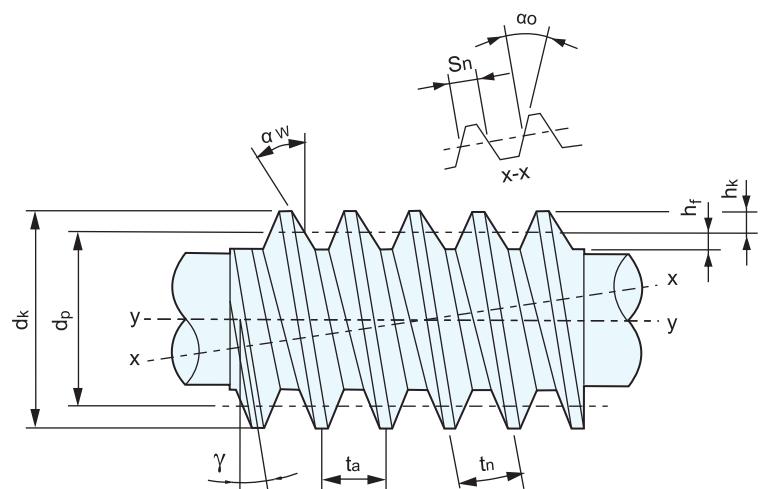

TIMING BELT PROFILE



AAMCOL

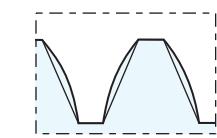
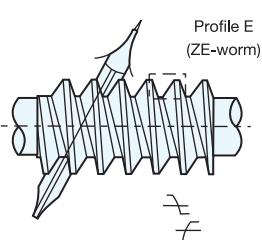
	Timing Belt Profile	Timing Pulley Profile
MXL		
XL		
L		
H		
XXH		

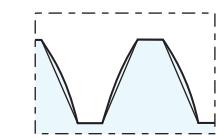
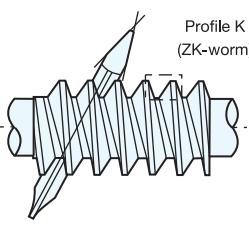
TIMING BELT PROFILE


	Timing Belt Profile	Timing Pulley Profile
STS 2M		
STS 3M		
STS 4.5M		
STS 5M		
STS 8M		
STS 14M		



Timing Belt Profile of HTD Type

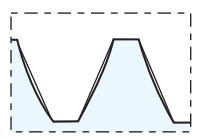
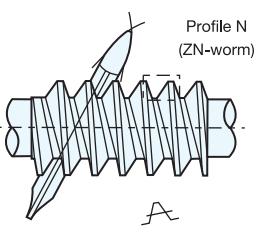
- ❖ Worm Data is mostly influential on designing Worm Hob, so that when ordering worm hob, data of worm is required.
- ❖ While ordering please choose type, profile and data among the following options, and furnish with Worm Data (drawing).
 - " Select either BORE TYPE or SHANK TYPE
 - In case of SHANK TYPE, present specification of SHANK, along with direction of rotation of Hob.
 - " Select Standard of tooth profile; ZI, ZK, ZN, ZA, and others
 - In general, worm hob is manufactured by the standard profile of ZK and ZI
- " WORM DATA
 - Axial or Normal module
 - Normal pressure angle
 - Worm out diameter and pitch circle diameter
 - Lead angle and direction
 - Number of worm threads
 - Centre Distance and Backlash.
- ❖ For general bore type and shank type hobs, please refer to the graph on the right.



Selection Table for VVorm Hob Type

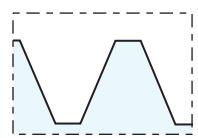
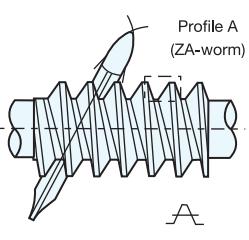



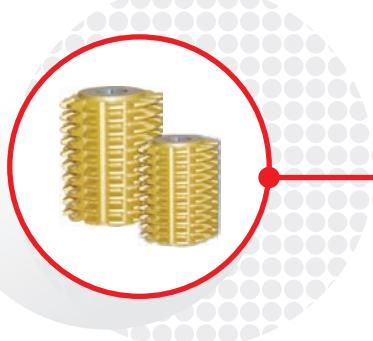
Worm Hob - Vocabulary

x-x : Normal Section
y-y : Axial Section
 d_p : Pitch Diameter
 d_k : Outer Diameter
 t_n : Normal Pitch
 t_a : Axial Pitch
 S_n : Normal Tooth Thickness
 γ : Helix Angle (Right/Left)



α_o : Normal Pressure Angle
 α_w : Axial Pressure Angle
 h_x : Addendum
 h_i : Dedendum
 m_n : Normal Module
 m_s : Axial Module
 Z_w : Number of Threads
 Z_2 : Number of Teeth of Worm Gear

Flank Forms



ZE Tooth Profile (ZI)
Tooth profile of worm shaft is involute wave.


ZK Tooth Profile
A tooth profile ground by giving standard pressure angle.

ZN Tooth Profile
A tooth profile having normal profile in straight line

ZA Tooth Profile
A tooth profile having axial profile in straight line

INSPECTION TOOLS & PRECISION ACCESSORIES

SPLINE GAUGE is an inspection tool used to quickly ascertain the acceptability of Internal/External splines or serration dimensions.

It checks cumulative effect of various dimensions & permissible errors to confirm suitability for assembly of component(s). Thus, it helps in mass production to achieve perfection to micron level & eliminates need for skilled hands.

PROFILES

- : Involute
- Serration/Trapezoidal
- Straight Sided Splines

TYPES

- : **Spline Ring Gauge** for Checking External Splines
- Spline Plug Gauge** for Checking Internal Splines

These are further classified in two types depending on dimensional limits of component

GO GAUGE : To check maximum material condition of component (full form)

NO-GO GAUGE : To check minimum material condition of component (sector type)

OTHER PRODUCTS

- : Spline Mandrels
- Index Plates
- Serration Drifts

QUALITY ASSURANCE

- : Each Gauge is individually checked on **Klingelnberg P-26 Gear Tester** to conform that the involute profile meets the applicable DIN Standards.

MATERIAL

- : SAE 01/02

PROPERTIES : Cold work Tool Steels. Dimensional Stability. Very high resistance to cracking.

HARDNESS

- : RC 58 to 61

SPLINE GAUGES

INVOLUTE SPLINE GAUGES

	PLUG	RING
Max. Major dia.	180 mm	176 mm
Min. Major dia.	10 mm	-
Min. Minor dia.	-	20 mm
Module Range	0.5 to 5.0	0.5 to 5.0
Spline Length	60 mm	45 mm

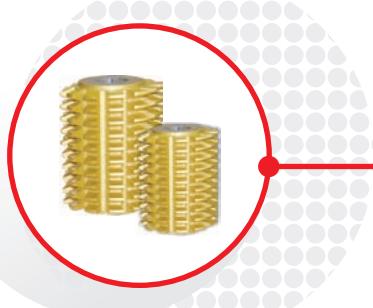
STRAIGHT SPLINE GAUGES

	PLUG	RING
Max. Major dia.	180 mm	176 mm
Min. Major dia.	10 mm	-
Min. Minor dia.	-	8 mm
Spline Length	60 mm	35 mm
		Cross-Cut Length

SERRATION GAUGES

	PLUG	RING
Max. Major dia.	180 mm	176 mm
Min. Major dia.	10 mm	-
Min. Minor dia.	-	20 mm
Spline Length	60 mm	40 mm

INDEX PLATES


For Tooth chamfering machines	Kaap spline grinders
HOB sharpening machines	Or similar as per customer drawings
Hurth spline milling machines	

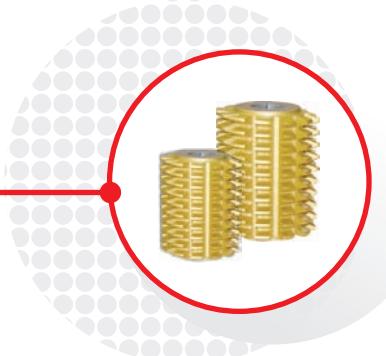
SPLINE MANDRELS

Max. Major dia.	180 mm
Max. Spline Length	250 mm
Total Length	350 mm

MATERIAL : OHNS - SAE 01/02

HARDNESS : HRC 58 TO 61

FORM RELIEVED MILLING CUTTERS



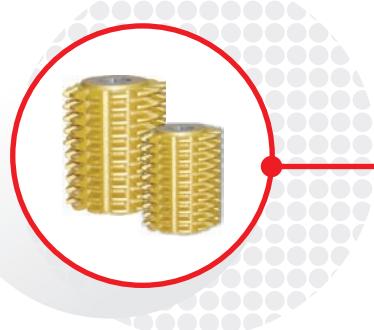
AAMCOL offers precision form relieved ground or unground profile cutters ranging from standard single angle, double angle, convex/concave cutters to most complex intricate profile cutters like end mill type gear cutters, spline milling cutters, turbine blade profile milling cutters etc.

These milling cutters are made out of high alloy super high speed steels; with precision ground or unground forms; with straight or helical flutes for shear cutting; continuous or intermittent (staggered) cutting teeth; with or without chip breakers; radial, positive or negative rake tooth faces; with radial, axial or undercutting clearances; individual, gang or solid sections. As cutter teeth are cam relieved, only rake faces need to be sharpened without changing the tooth form through their full life. Cutter accuracy is maintained as long as they are accurately resharpened. This simplifies tool maintenance and provides more consistent quality. These cutters provide high degree of accuracy and efficient cutting geometry and hence ordinary cutters can not be comparable in no way with these AAMCOL special cutters. Some important applications of these cutters are highlighted below :

- ❖ Spur gear teeth milling for specific number of teeth or in sets of 8 and 15 cutters to IS or BS standards.
- ❖ Sprocket teeth milling cutters, precision ground or unground profile.
- ❖ Rack teeth milling of highest accuracy, single or multistrand, precision ground or unground profiles.
- ❖ Worm thread milling, roughing or finishing, with and without chamfer ground or unground form.
- ❖ Spline milling on universal or HURTH type machines.
- ❖ Special serration milling on machine chuck-jaws, automobile con-rod jaws etc.
- ❖ Special narrow & deep groove milling on automobile con-rods.
- ❖ Serration milling cutter for flanged yoke and companion flange.

Heavy duty cobalt bearing super HSS Hi-Bite multipurpose mills, shank type or shell type designs are manufactured in various diameters as per DIN 844 and DIN 845B or to customers specific requirement and provide the following advantages :


- ❖ Most versatile milling cutter.
- ❖ Ability to take heavier cuts at higher speeds with less chatter and vibration.
- ❖ High rate of metal removal with minimum Horse Power.
- ❖ Removes metal at the higher rate with less deflection than conventional end mills, particularly in the longer lengths.
- ❖ Tooth form provides excellent heat dissipation during heavy cutting operations.


- ❖ Unique computer generated tooth profile designed for excellent chip breaking characteristics.
- ❖ Wide applications viz : die-sinking, horizontal boring, universal milling, CNC machining centers, drilling machine etc...
- ❖ Also supplied with special large profiles with helical flutes for finish die sinking, form milling or turbine blade milling etc...
- ❖ The cutters are form relieved which means simplified resharpening with no change in tooth profile. Many more resharpenings possible as compared to ordinary end mills.

" Maximum profile length	300 mm
" Maximum cutter diameter	220 mm
" Involute cutters for external and internal gear teeth	4 module to 48 module

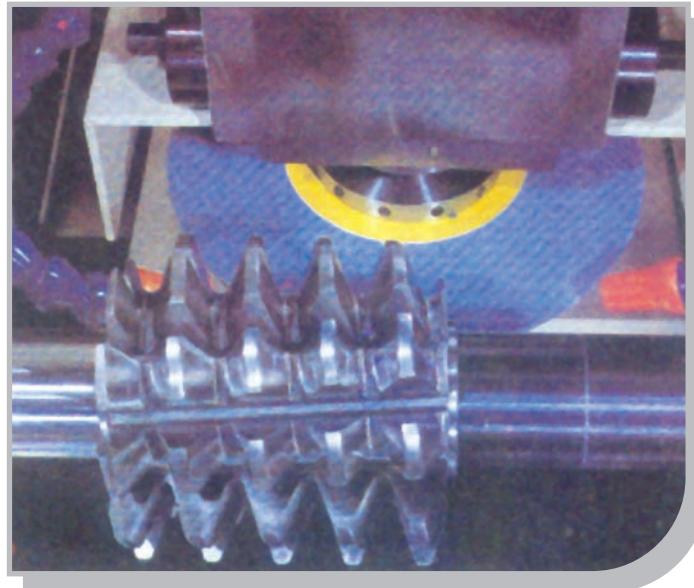
AAMCOL SPECIAL TOOLS

AAMCOL special tools programme includes rack type shaper cutters used for shaping spur, helical or herringbone gears on *Maag* or *Sunderland* shaping machines; profile rollers for cold rolling on *Grob* machines; hi-bite mills with special design chip breakers etc.

HEAT TREATMENT

Through decades of experience in producing highest quality tools made from different types of super HSS, AAMCOL has established guaranteed resources in HSS heat treatment technology. Heat treatment on Super HSS & HSS tools requires special skills & precautions, especially for long shank tools having varying cross-sections.

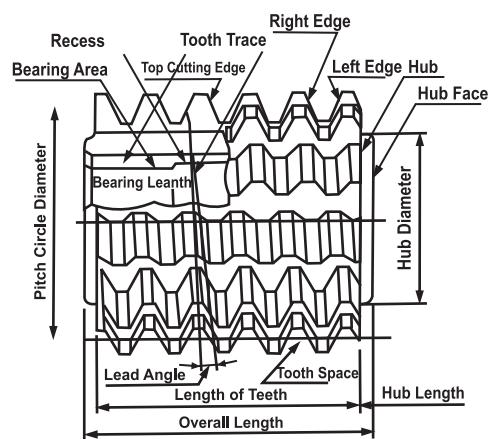
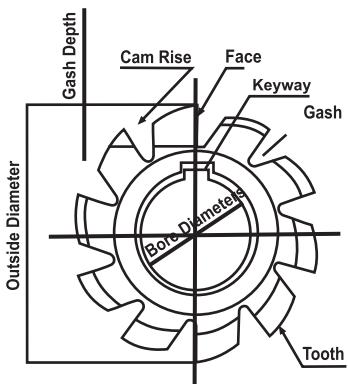
State-of-the-art heat treating equipments and Instruments added with skilled & specialized team assure delivery of uniform, consistent quality of treated tools.


When your tools are sent to AAMCOL for heat treating, you are assured of high quality services. Heat treatment services for SHSS or HSS tools on contract basis are also offered.

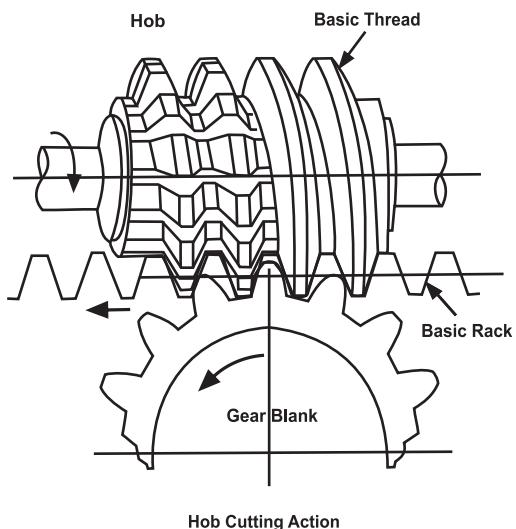
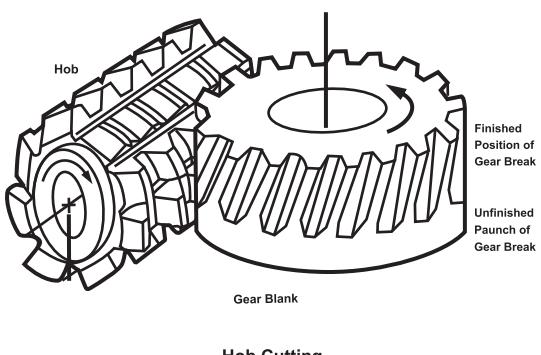
RE-SHARPENING - HOBS & SHAVING CUTTERS

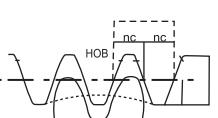
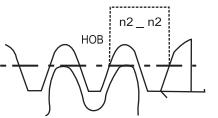
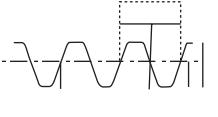
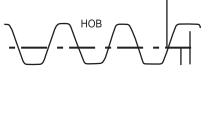
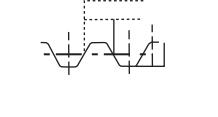
With the long experience and know-how gained during last 25 years working experience, AAMCOL tool sharpening, putting latest technology in the field, gives edge over others. Accurate resharpening of tools is of utmost importance for maintaining quality of machined components. A highest quality tool shall be rendered

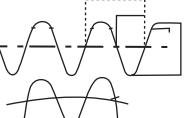
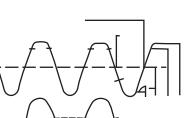
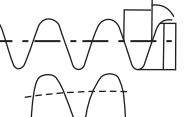
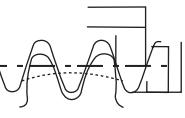
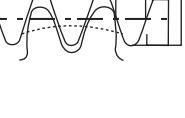
useless due to bad resharpening. Extra care is taken to maintain thermal & metallurgical stability of resharpened tools at AAMCOL. Every care is taken to avoid common tool sharpening problems such as true hob or cutter mounting on arbor, setting up to maintain desired rake faces, flute helix and correct flute indexing etc.



When your hobs are sharpened at AAMCOL, you are guaranteed of accurate and consistent quality.

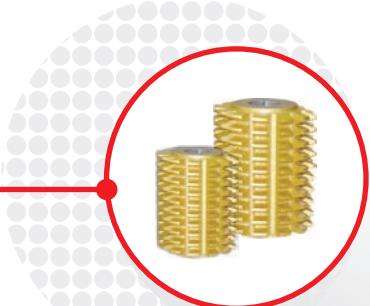
Aamcol also equipped to provide services of Shaving Cutter Resharpening to our esteemed customers. We carry out the sharpening of Shaving cutters with straight profile, lead crowning and profile crowning.



After resharpening, all parameters are checked on Klingelnberg Gear Tester P26 and protocol furnished.






Hob Nomenclature

Hobbing Principle


Basic Rack Tooth Profile (Din 3972)

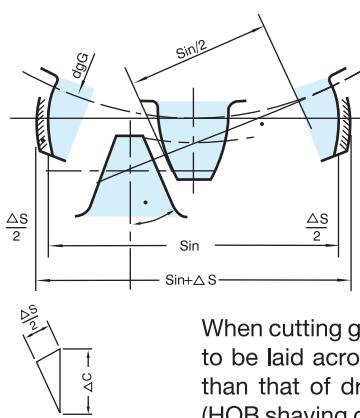
Type	Class Cation	Symbol	Basic rack tooth Profile
FINISHING	STANDARD	FIN	<p>PA = 20° or 14.5° hao = 1.25m D+F = 2.25m ho = 2.5m r = 0.2m - 0.39m</p>
	SEMI-TOPPING	S-TOP	<p>PA = 20° or 14.5° hao = 1.25m D+F = 2.25m r = 0.2m - 0.39m</p> <p>Values of X, A3 & ho must be cal</p>
	FULL-TOPPING	TOP	<p>PA = 20° or 14.5° hao = 1.25m ho = D+F = 2.25m r = 0.2m - 0.39m</p>
	STUB	STUB	<p>PA = 20° hao = 0.8m D+F = 2.25m ho = 2.0m r = 0.3m</p>
	INVOLUTE SPLINE DIN5480	STUB DIN5480	<p>PA = 30° hao = 0.6m D+F = 0.6m ho = 1.2m r = 0.16m</p>
	TIP MODIFICATION	TIP RELIEF	<p>PA = 20° or 14.5° hao = 1.25m D+F = 2.25m ho = 2.5m r = 0.2m = 0.39m Relief = Tr = As per std. or as per requirement</p>

Type	Class Cation	Symbol	Basic rack tooth Profile
PRE - FINISHING	HIGH ADDENDUM	PER-S PER-G	<p>PA = 20° or 14.5° hao = 1.35m So = tn/2 - (2 X FA) D+F = 2.35m r = 0.3m FA = As per chart or as per requirement.</p>
	PROTUBERANCE	PS-P PG-P	<p>PA = 20° or 14.5° hao = 1.4m So = tn/2 - (2 X FA) D+F = 2.4m ho = 2.6m r = 0.3m FA = As per chart or as per requirement.</p>
	PRE-SHAVING/PRE-GRINDING	PS-ST PG-ST	<p>PA = 20° or 14.5° hao = 1.35m or 1.25m So = tn/2 - (2 X FA) D+F = 2.35m or 2.25m ho = 2.6m r = 0.3m FA = As per chart or as per requirement.</p>
	SEMI-TOPPING	PSP-ST PGP-ST	<p>PA = 20° or 14.5° hao = 1.35m or 1.25m So = tn/2 - (2 X FA) D+F = 2.35m or 2.25m ho = 2.6m r = 0.3m FA = As per chart or as per requirement.</p>
	PROTUBERANCE SEMI-TOPP		<p>PA = 20° or 14.5° hao = 1.25m So = tn/2 - (2 X FA) D+F = 2.25m ho = 2.5m r = 0.2m - 0.39m</p>
	ROUGHING	RGH	<p>PA = 20° or 14.5° hao = 1.25m So = tn/2 - (2 X FA) D+F = 2.25m ho = 2.5m r = 0.2m - 0.39m</p>

Finishing Stock

Module Tooth profile	Above 1 Upto 1.5	Above 1.5 Upto 2.5	Above 2.5 Upto 4.0	Above 4.0 Upto 6.3	Above 6.3 Upto 10	Above 10 Upto 12	Above 12 Upto 6	Above 16 Upto 26
Roughing					0.5	0.8	1.0	1.2
Pre-Shaving	0.02	0.03	0.05	0.08				
Pre-Grinding	0.12	0.15	0.18	0.20	0.26	0.40		0.60

Addendum Modification Coefficient and Amount of Chamfer



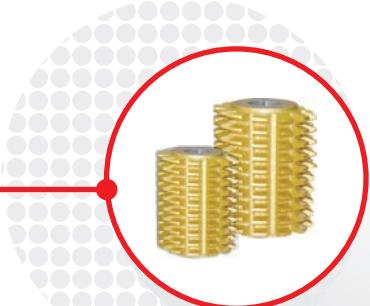
PRESSING TOOL(HOB) INTO GROOVE WHEN CUTTING GEAR

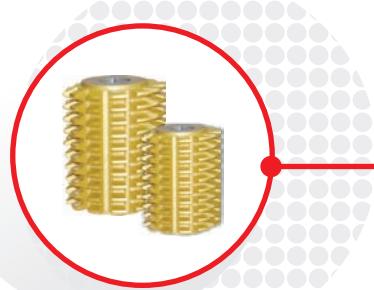
Conversion Table for Adding or Subtracting Thickness of Tooth when cutting gear

Input Value $\alpha=20^\circ$										
S	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0		0.015	0.025	0.044	0.059	0.073	0.088	0.102	0.117	0.132
0.1	0.146	0.161	0.175	0.190	0.205	0.219	0.234	0.249	0.263	0.278
0.2	0.292	0.307	0.322	0.336	0.351	0.366	0.380	0.395	0.409	0.242
0.3	0.439	0.453	0.468	0.483	0.497	0.512	0.526	0.541	0.556	0.570
0.4	0.585	0.599	0.614	0.629	0.643	0.658	0.673	0.687	0.702	0.716
0.5	0.731	0.746	0.760	0.775	0.790	0.804	0.819	0.833	0.848	0.863
0.6	0.899	0.892	0.906	0.921	0.936	0.950	0.965	0.980	0.994	1.009
0.7	1.023	1.038	1.053	1.067	1.082	1.097	1.111	1.126	1.140	1.155
0.8	1.170	1.184	1.199	1.214	1.228	1.243	1.257	1.272	1.287	1.301

Input Value $\alpha=14.5^\circ$										
S	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0		0.020	0.040	0.060	0.080	0.100	0.120	0.140	0.160	0.180
0.1	0.200	0.220	0.240	0.260	0.280	0.300	0.320	0.340	0.360	0.379
0.2	0.399	0.419	0.439	0.459	0.497	0.499	0.519	0.539	0.559	0.579
0.3	0.599	0.619	0.639	0.659	0.679	0.699	0.719	0.739	0.759	0.779
0.4	0.779	0.819	0.839	0.859	0.879	0.899	0.919	0.939	0.959	0.979
0.5	0.999	1.019	1.038	1.058	1.078	1.098	1.118	1.138	1.158	1.178
0.6	1.198	1.218	1.238	1.258	1.278	1.298	1.318	1.338	1.358	1.378
0.7	1.398	1.418	1.438	1.458	1.478	1.498	1.518	1.538	1.558	1.578
0.8	1.598	1.618	1.638	1.658	1.677	1.697	1.717	1.737	1.757	1.777

When cutting gear, if the thickness of tooth to be laid across is as much larger as Δs than that of drawing, then press the tool (HOB shaving cutter or grindstone) into the direction toward radius as much as Δc .


$$\Delta C = \frac{\Delta S}{2 \sin \alpha_0}$$


In case α_0 is 14.5°

$$\Delta C = 1.997, \Delta S = 2\Delta C$$

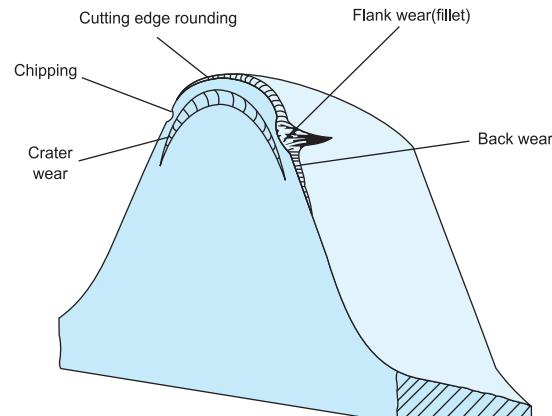
In case α_0 is 20°

$$\Delta C = 1.462, \Delta S = 1.5\Delta C$$

Timing Belt Profile

Cutting Parameters (Standardized Condition of Module 2-2.5)

Item	Range of Use			
	Subject Material to be machined	Cutting Speed (m/min)	Climb Cut Feed (mm/rv)	
			Number of Conditions 1-2	Number of Conditions 3-5
Cutting Speed and UP Milling	More than S45C	40-70	1.5 - 2.5	1.0 - 2.0
	SCM440	50-80	2.0 - 3.0	1.5 - 2.5
	SCM420 Scr 420	60-110	2.5 - 3.5	2.0 - 3.0
	FID 70	40-50	2.0 - 3.0	1.5 - 2.5
Conventional cut	As it causes to bring an damage on Hob rapidly, please avoid this job as much as possible. (Applying to a large module)			
Work Speed	Hob RPM : Q Number of Conditions of Hob: Work Speed as = $TH \times (min^{-1})$ Work Dimension: Z			
Depth of Grinding	This will be depended upon all requirements of the subject gear that will machined.			
Amount of Shift	0.1m - 0.5m (m: module)			


Tool Wear

Damages of cutter caused by hob cutting can largely be divided into flank wear and crater wear depending upon the damaged part.

Economical timing for Sharpening job will be -

- When the wear has reached up to the point of 0.2 mm from the width of flank wear.
- When the wear has reached up to the point of 0.1 mm from the depth crater wear.
- We recommend the amount of sharpening, as of (amount of wear + 0.1 mm).
- And it is important to choose a grinding wheel that has been Sharp, and at the same time you need to be careful about heat that makes the edge of hob cutter dull, and occurrence of cracks during grinding works.

Particularly, we suggest that you avoid creep feed grinding with powder metal involving with high-alloy steel, instead we command you to do it by light cutting and grinding with high transmitting speed.

Types of wear on a hob tooth

For example; S-31, SNC-30

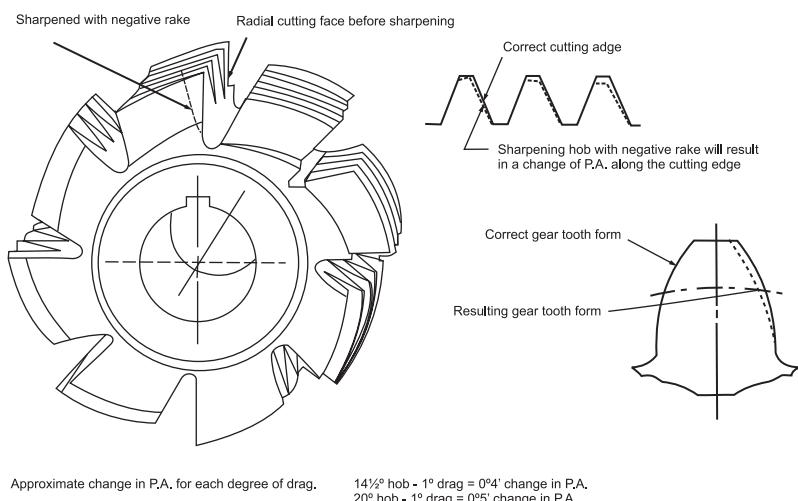
Material of Hob	Diameter of Grinding Wheel	Number of Revolutions of Grinding Wheel	Transmitting Speed	Amount of Cutting		Grinding Liquid
HSS	200 mm	2200-3000/min	300-600/mim	Rough	0.10-0.15mm	Liquid exclusively for grinding purpose
				Completion	0.02-0.05mm	
Powder metal	200mm	2200-3000/min	300-600/mim	Rough	0.05-0.10mm	
				Completion	0.01-0.02mm	

Point of sharpening

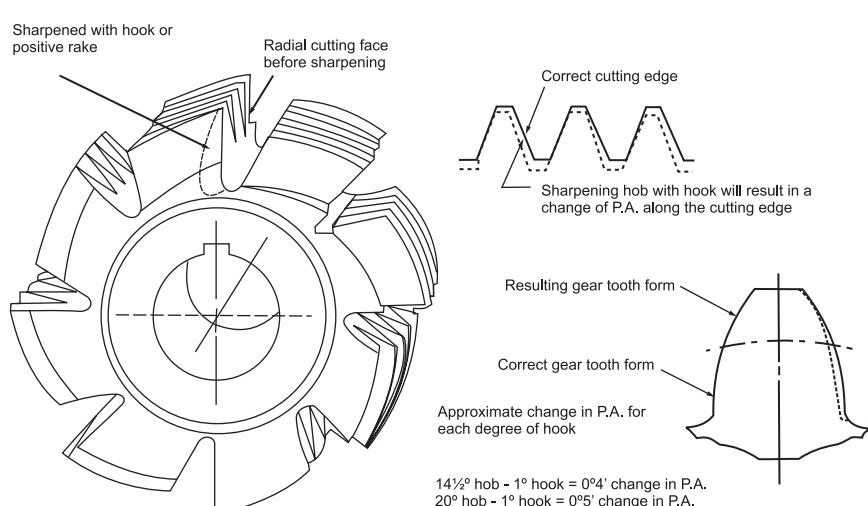
- To decide an economical timing for sharpening, please regard it as standard when the wear has been approached to the point of about 0.2 mm from the width of wear of clearance space.
- Be careful about occurrence of plastic deformation during grinding works.
- Please sharpen the edge of cutter often using white stone.
- Please change grinding fluid regularly, two times a year.

Grinding Wheel now in use	CB 100-R 100B90T
Abrasive Grain	CBN (Retinoid)
Particle Intensity	100
Concentration	100
Coherence	R

Effect of sharpening errors

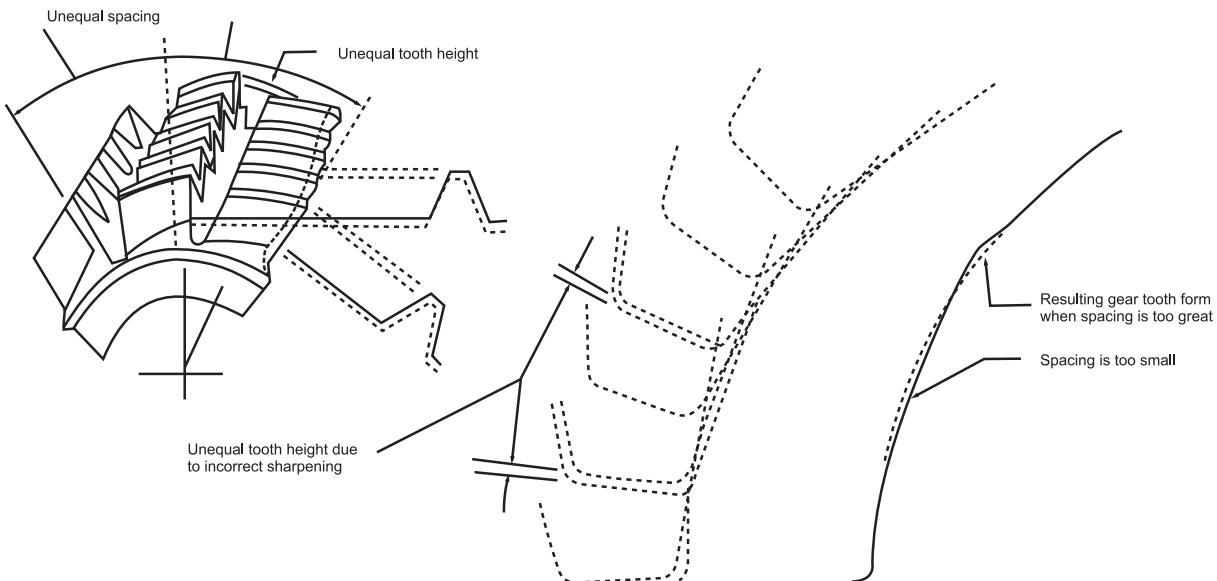

Hobs resharpened on an arbor in a resharpening machine that runs eccentrically will result in sharpening errors that give the same "wandering" profile characteristic to an involute profile as an eccentrically mounted properly sharpened hob in a hobbing machine.

Other sharpening errors to the basic rack that effect hob profile are:

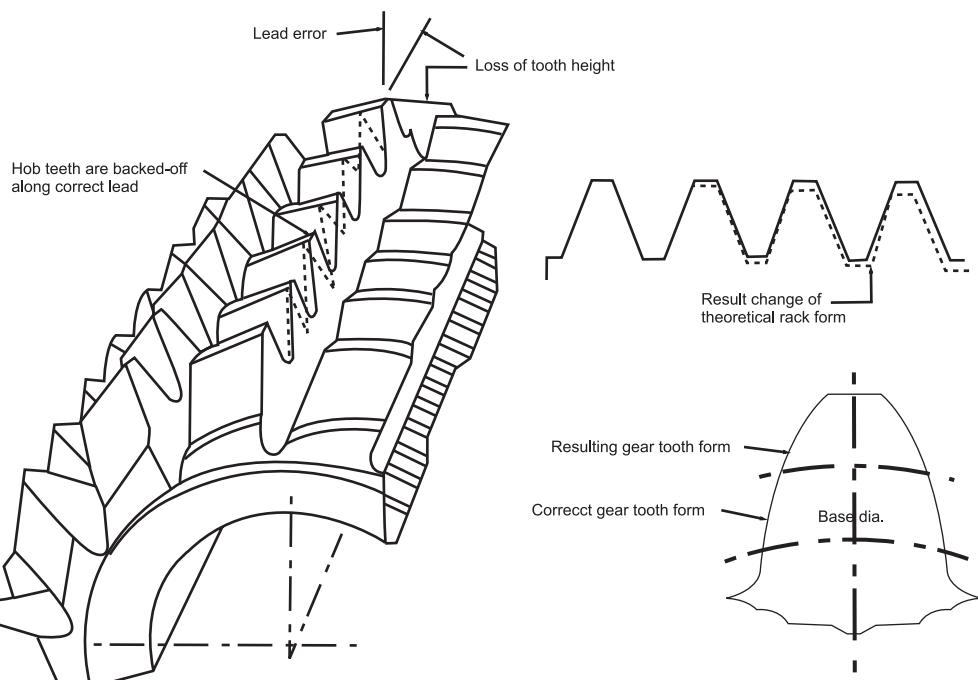

- “ Hob cutting faces are sharpened with negative rake
- “ Hob cutting faces are sharpened with positive rake
- “ Hob cutting faces are sharpened by unequal amounts resulting in uneven flute spacing

A hob sharpened with incorrect lead will result in one end of the hob being larger in diameter than the other. As the hob is shifted across its usable life in the hobbing machine, a change in the size of the work piece will be evident.

Effect on profile of a hob resharpened with negative rake

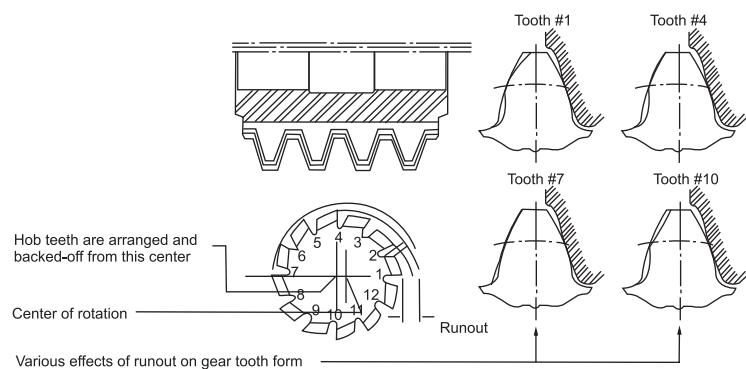


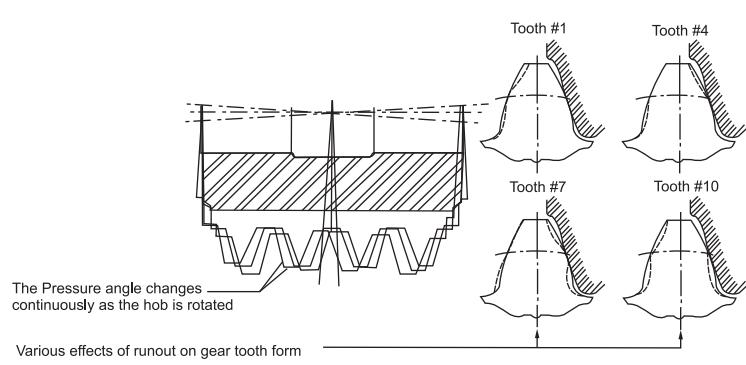
Effect on profile of a hob resharpened with Positive rake



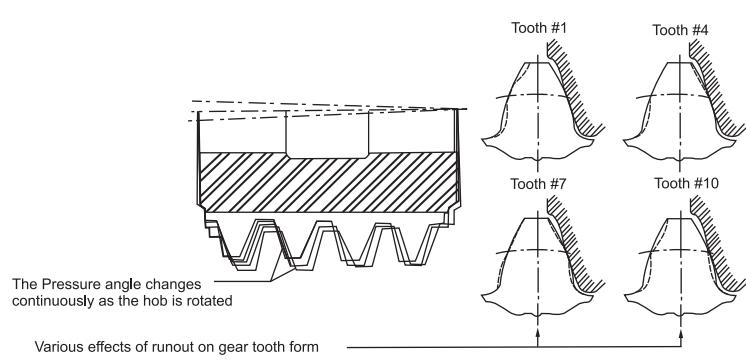
Sharpening Errors and their effect

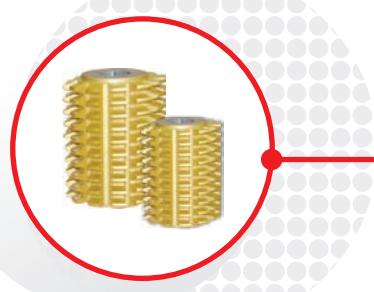
Effect on profile of a hob resharpened with cutting faces unequally spaced, creating accumulated flute spacing error.


Effect on size of work piece when hob is resharpened with the incorrect lead. The loss of tooth height from one end of the hob to the other results in a change of size on the work piece as the hob is shifted across its usable life.


Despite a hypothetically perfect hob, manufactured error free, the hob can produce profile errors if mounted eccentrically on the hobbing machine arbor. Hob runout error due to either careless mounting or to improper resharpening is the greatest contributor to out-of-tolerance hobbed involute profiles. Figures 1,2, & 3 illustrate the effects three types of hob runout have upon the gear tooth form. These effects are created, most often, by:

- “ Failure to true up the hob arbor.
- “ Failure to true up the hob on the hob arbor by truing the hub indicating bands.
- “ Bent, oversize or undersize hob arbor.
- “ Non-parallel hob clamping spacers, misaligned or wornout arbor support bearing.


The effect of uniform runout over the entire hob.



The effect of runout on each side of the hob 180° apart.

The effect of hob runout on one side of the hob only.

❖ HOBS FOR SPUR & HELICAL GEARS AND INVOLUTE SPLINES

" Gear Data

- [a] Normal module/DP
- [b] No. of teeth
- [c] Normal pressure angle
- [d] Helix angle and hand
- [e] Outside diameter
- [f] Root diameter
- [g] Amount of tip chamfer- If applicable
- [h] Root-flat/full fillet
- [i] Tip relief details - If applicable
- [j] DOP or MOT sizes at hobbing and finishing stage

- [k] Material and hardness at hobbing stage

❖ HOBS FOR STRAIGHT SPLINES

" Spline Data

- [a] No. of splines
- [b] Spline width
- [c] Out side dia.
- [d] Root dia.
- [e] Form dia.
- [f] Amount of chamfer- for semitopping hobs
- [g] Under-cut details, if required
- [h] Shoulder details, if applicable
- [i] Basic profile reference standard
- [j] Material & its hardness at hobbing stage

❖ WORM WHEEL HOBS

Since these must be tailored to the respective gears & applications, worm wheel hobs can not be manufactured in standard sizes. Therefore following details will be required -

- [a] Drawing / details indicating worm thread & wheel tooth particulars, center distance, ratio etc.
- [b] The type of worm thread profile ZN, ZA, ZK or ZI according to DIN 3975 or other special profile.
- [c] The amount of assembly backlash & type of contact pattern required.
- [d] In case of shank type hob, shank holding dimensions to suit the hobbing machine will be required.

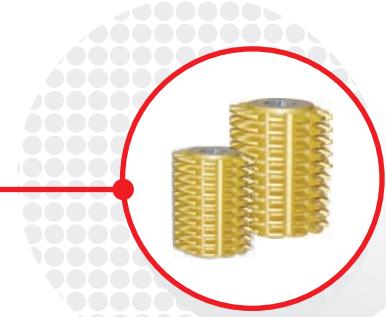
❖ SPROCKETHOBS

" Sprocket Data

- [a] Chain pitch
- [b] Roller dia
- [c] Chain/ Sprocket reference standard
- [d] Component drawing/details

" Hob Data

- [a] Overall size - OD x Length x Bore
- [b] No. of starts
- [c] Hand of threads
- [d] Type - Finishing/preshave/pregrinding/roughing
- [e] Type of profile-Nontopping/semitopping/full topping
- [f] Class of accuracy
- [g] Amount of shaving/grinding allowance wherever applicable


" Hob Data

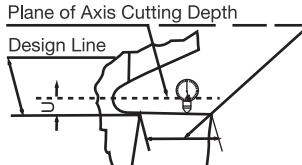
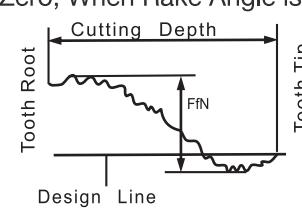
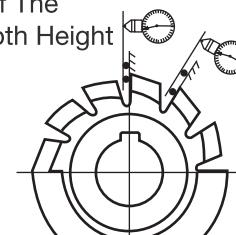
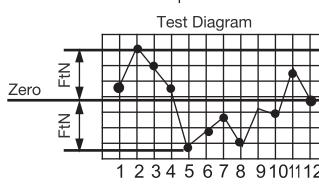
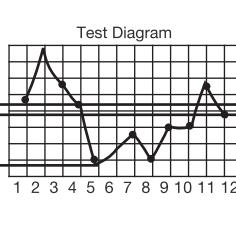
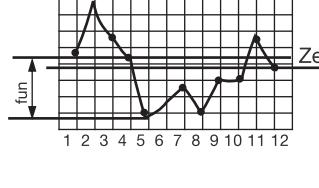
- [a] Overall size- OD x Length x Bore
- [b] No. of starts
- [c] Hand of threads
- [d] Type of hob - Finishing/ pre-grinding
- [e] Type of profile- Semitop/nontop/ with lugs, with shoulder etc.
- [f] Amount of grinding allowance wherever applicable

For special hobs having non standard profiles, fixed position type etc., component drawing indicating tooth profile details will be required. Hob size & profile details can be designed depending upon part requirements and suitable hob will be manufactured.

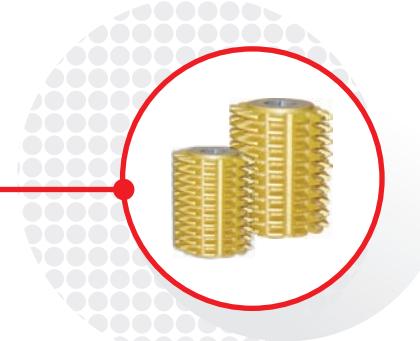
ORDERING DETAILS

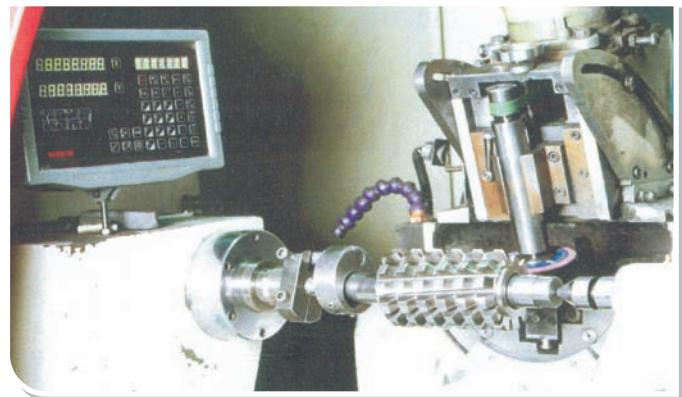
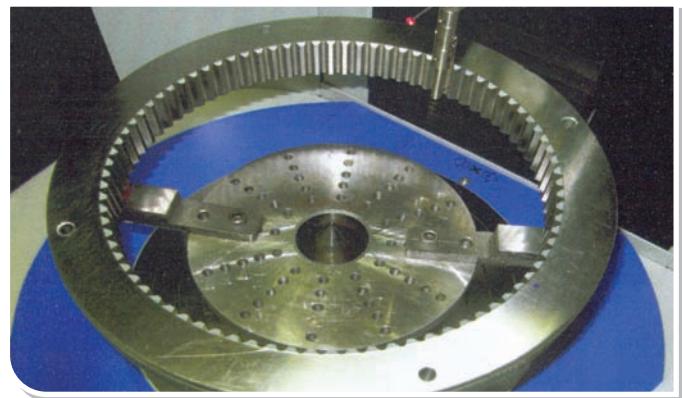
Component Data Required for Design of Spline Gauges

Sr. No.		PLUG GAUGES			RING GAUGES		
		Involute	St.Spline	Serration	Involute	St.Spline	Serration
1	No. of Teeth	✓	✓	✓	✓	✓	✓
2	Module/DP	✓			✓		
3	Pressure Angle	✓			✓		
4	Spline Width/Gap		✓			✓	
5	Flank Angle Internal/External			✓			✓
6	Minor Dia with Tolerance	✓	✓	✓	✓	✓	✓
7	Major Dia with Tolerance	✓	✓	✓	✓	✓	✓
8	Chamfer/Radius at major diameter	✓	✓	✓	✓	✓	✓
9	Chamfer/Radius at minor diameter	✓	✓		✓	✓	
10	Length of Splines	✓	✓	✓	✓	✓	✓
11	Form Diameter	✓		✓	✓		✓
12	DOP/DBP with Pin Dia.	✓		✓			
13	Max. Major Dia. of mating part	✓			✓		✓
14	Min. Minor Dia. of mating part			✓	✓		✓
15	Circular space/tooth width at PCD	✓		✓	✓		✓
16	Minor/Major Apex. Diameter with Tolerance			✓			✓







**IN ADDITION CUSTOMERS TO INDICATE FOLLOWING
GAUGE REQUIRED FOR CHECKING**

Yes/No	
Flank	Y/N
Flank & Major Dia.	Y/N
Only Major Dia.	Y/N


No.	Measured Quantity	Symbol Denoting Variation	Class	Over 0.63 To 1	Over 1 To 1.6	Over 1.6 To 2.5	Over 2.5 To 4	Over 4 To 6.3	Over 6.3 To 10	Over 10 To 16	Over 16 To 25	Over 25 To 40	
1	Bore Diameter. 		A	I. S. A. Tolerance Field H ₅									
			B	I. S. A. Tolerance Field H ₆									
			C	I. S. A. Tolerance Field H ₅									
			D	I. S. A. Tolerance Field H ₇									
			AA	I. S. A. Tolerance Field H ₅									
2	Form Tolerance of Bore.		All Classes	1/2 The Bore Tolerance									
3	Tolerance for Longitudinal of Clutch Drive Keyway.			According To DIN 138									
4	Radial Run-out on Both Proof Flanges. Referenced to Bore Axis. 	frp	A	5	5	5	6	8	10	12	16	20	
			B	6	6	6	8	10	12	16	20	25	
			C	10	10	10	12	16	20	25	32	40	
			D										
			AA	5	5	5	5	5	5	6	6	8	
The Highest Points Measured On The Two Proof Flanges Must Not Be More Than 90° Apart.													
5	Axial Run-out on Hub Faces Referenced to Bore Axis. 	fps	A	3	3	3	5	5	8	8	10	10	
			B	4	4	4	6	6	10	10	12	12	
			C	6	6	6	10	10	16	16	20	20	
			D	10	10	10	16	16	25	25	32	32	
			AA	3	3	3	3	3	4	5	5	6	
6	Radial Run-out on Tooth Tips Referenced to Bore Axis 	frk	A	12	16	20	25	32	40	50	63	80	
			B	25	32	40	50	63	80	100	125	160	
			C	50	63	80	100	125	160	200	250	315	
			D	100	125	160	200	250	315	400	500	630	
			AA	10	10	12	16	20	25	32	40	50	



7	<p>Form & Positional Variation of Cutting Faces</p> <p>Distance U is Amount by Which Design Line is Distant Form Plane of Hob Axis (Zero, When Rake Angle is 0°)</p>	FfN	A	12	16	20	25	32	40	50	63	80
			B	25	32	40	50	63	80	100	125	160
			C	50	63	80	100	125	160	200	250	315
			D	100	125	160	200	250	315	400	500	630
			AA	10	10	12	16	20	25	32	40	50
8	<p>Individual Pitch Measured at Half The Tooth Height</p> <p>Test Diagram</p>	FtN	A	± 12	± 16	± 20	± 25	± 32	± 40	± 50	± 63	± 80
			B	± 25	± 32	± 40	± 50	± 63	± 80	± 100	± 125	± 160
			C	± 50	± 63	± 80	± 100	± 125	± 160	± 200	± 250	± 315
			D	± 100	± 125	± 160	± 200	± 250	± 315	± 400	± 500	± 630
			AA	± 10	± 10	± 12	± 16	± 20	± 25	± 32	± 32	± 50
9	<p>Tooth to Tooth Pitch Measured at Half Tooth Height</p> <p>Test Diagram</p>	fun	A	12	16	20	25	32	40	50	63	80
			B	25	32	40	50	63	80	100	125	160
			C	50	63	80	100	125	160	200	250	315
			D	100	125	160	200	250	315	400	500	600
			AA	10	10	12	16	20	25	32	40	50

10	Cumulative Pitch Measured at Half Tooth Height <p>Test Diagram</p>	ftN	A	25	32	40	50	63	80	100	125	160
			B	50	63	80	100	125	160	200	250	315
			C	100	125	160	200	250	315	400	500	630
			D	200	250	315	400	500	630	800	1000	1250
			AA	20	20	25	32	40	50	63	80	100
The Tolerances Are Referenced To The Pitch Error That Is To Say To The Largest Cumulative Pitch Error Measured On The Hob Tested.												
11	Gash Lead over 100MM Hob Length, Referred to Ref. Cylinder 	fHN	A	± 70								
			B	± 100								
			C	± 140								
			D	± 200								
			AA	± 50								
12	Form Error Of Cutting Edge 	Ffs	A	10	11	12	14	16	20	25	32	40
			B	20	22	25	28	32	40	50	63	80
			C	40	45	50	56	63	80	100	125	160
			D									
			AA	6	6	6	8	10	12	14	18	22
13	Tooth Thickness on Reference Cylinder 	fs	A	-25	-28	-32	-36	-40	-50	-63	-80	-100
			B	-50	-56	-63	-71	-80	-100	-125	-160	-200
			C	-100	-112	-125	-140	-160	-200	-250	-320	-400
			D	-100	-112	-125	-140	-160	-200	-250	-320	-400
			AA	-16	-16	-16	-20	-25	-32	-40	-50	-63

14	<p>Hob Lead from cutting Edge to cutting Edge in the Direction of Hand</p>	fHF	A	± 6	± 7	± 8	± 9	± 10	± 12	± 32	± 20	± 25
			B	± 12	± 14	± 16	± 18	± 20	± 25	± 32	± 40	± 50
			C	± 25	± 28	± 32	± 36	± 40	± 50	± 63	± 80	± 100
			D	± 50	± 56	± 63	± 71	± 80	± 100	± 125	± 160	± 200
			AA	± 4	± 4	± 4	± 5	± 6	± 8	± 10	± 12	± 16
Where, HN - Lead Of Gashes Or Tooth Rows. H - Hob Lead (Helix), i-No. Of Gashes Or Tooth Rows, The Sign In The Brackets Is + If The Gash Lead & The Hob Lead Are In Opposite Direction & - If They Are In the Same Direction.												
15	<p>Hob lead in the direction of hand between any two cutting edges on the same thread.</p>	F _{HF}	A	10	11	12	14	16	20	25	32	40
			B	20	22	25	28	32	40	50	63	80
			C	40	45	50	56	63	80	100	125	160
			D	80	90	100	112	125	160	200	250	320
			AA	6	6	6	8	10	12	14	18	22
Where, HN - Lead Of Gashes Or Tooth Rows. H - Hob Lead (Helix), i-No. Of Gashes Or Tooth Rows, n - No. of cutting edges over which the measurement is made. The Sign In The Brackets is +ve if The Gash Lead & Hob Lead Are In Opposite Direction & - ve if they are in Same Direction.												
16	<p>Base pitch element Measured from cutting edge to cutting edge</p>	fe	A	± 6	± 7	± 8	± 9	± 10	± 12	± 16	± 20	± 25
			B	± 12	± 14	± 16	± 18	± 20	± 25	± 32	± 40	± 50
			C	± 25	± 28	± 32	± 36	± 40	± 50	± 63	± 80	± 100
			D									
			AA	± 4	± 4	± 4	± 5	± 6	± 8	± 10	± 12	± 16
Where. te - Base pitch i - No of gashes or tooth rows												
17	<p>Base pitch element within a Contact region</p>	Fe	A	12	14	16	18	20	25	32	40	50
			B	25	28	32	36	40	50	63	80	100
			C	50	56	63	71	80	100	125	160	200
			D									
			AA	8	8	8	10	12	16	20	25	32

STATE OF THE ART MANUFACTURING & TESTING FACILITIES**6 AXIS RELIEF GRINDING MACHINE****CNC RELIEVING LATHE****CNC HOB SHARPENING****HOB INSPECTION****SPLINE RING GAUGE INSPECTION**

An ISO 9001 : 2008 Certified Company

JAINEX AAMCOL LTD.
